Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Survey of data assimilation methods for convective‐scale numerical weather prediction at operational centres

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00020699%3A_____%2F18%3AN0000062" target="_blank" >RIV/00020699:_____/18:N0000062 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1002/qj.3179" target="_blank" >https://doi.org/10.1002/qj.3179</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/qj.3179" target="_blank" >10.1002/qj.3179</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Survey of data assimilation methods for convective‐scale numerical weather prediction at operational centres

  • Popis výsledku v původním jazyce

    Data assimilation methods for convective-scale numerical weather prediction at operational centres are surveyed in this paper. The operational methods include variational methods (3D-Var and 4D-Var), ensemble methods (LETKF) and hybrids between variational and ensemble methods (3DEnVar and 4DEnVar). At several of the operational centres, other assimilation algorithms, like latent heat nudging, are additionally applied to improve the model initial state, with emphasis on convective scales. It is demonstrated that the quality of forecasts based on initial data from convective-scale data assimilation is significantly better than the quality of forecasts from simple downscaling of larger-scale initial data. The duration of positive impact depends however on the weather situation, the size of the computational domain and the data that are assimilated. It is furthermore shown that more-advanced methods applied at convective scales provide improvements compared to simpler methods. This motivates continued research and development in convective-scale data assimilation. Challenges in research and development for improvements of convective-scale data assimilation are also reviewed and discussed in this paper. The difficulty of handling the wide range of spatial and temporal scales makes development of multi-scale assimilation methods and space-time covariance localization techniques important. Improved utilization of observations is also important. In order to extract more information from existing observing systems of convective-scale phenomena, for example weather radar data and satellite image data, it is necessary to provide improved statistical descriptions of the observation errors associated with these observations.

  • Název v anglickém jazyce

    Survey of data assimilation methods for convective‐scale numerical weather prediction at operational centres

  • Popis výsledku anglicky

    Data assimilation methods for convective-scale numerical weather prediction at operational centres are surveyed in this paper. The operational methods include variational methods (3D-Var and 4D-Var), ensemble methods (LETKF) and hybrids between variational and ensemble methods (3DEnVar and 4DEnVar). At several of the operational centres, other assimilation algorithms, like latent heat nudging, are additionally applied to improve the model initial state, with emphasis on convective scales. It is demonstrated that the quality of forecasts based on initial data from convective-scale data assimilation is significantly better than the quality of forecasts from simple downscaling of larger-scale initial data. The duration of positive impact depends however on the weather situation, the size of the computational domain and the data that are assimilated. It is furthermore shown that more-advanced methods applied at convective scales provide improvements compared to simpler methods. This motivates continued research and development in convective-scale data assimilation. Challenges in research and development for improvements of convective-scale data assimilation are also reviewed and discussed in this paper. The difficulty of handling the wide range of spatial and temporal scales makes development of multi-scale assimilation methods and space-time covariance localization techniques important. Improved utilization of observations is also important. In order to extract more information from existing observing systems of convective-scale phenomena, for example weather radar data and satellite image data, it is necessary to provide improved statistical descriptions of the observation errors associated with these observations.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10509 - Meteorology and atmospheric sciences

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Quarterly Journal of the Royal Meteorological Society

  • ISSN

    0035-9009

  • e-ISSN

    1477-870X

  • Svazek periodika

    144

  • Číslo periodika v rámci svazku

    713

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    39

  • Strana od-do

    1218-1256

  • Kód UT WoS článku

    000445200400017

  • EID výsledku v databázi Scopus

    2-s2.0-85044433626