Survey of data assimilation methods for convective‐scale numerical weather prediction at operational centres
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00020699%3A_____%2F18%3AN0000062" target="_blank" >RIV/00020699:_____/18:N0000062 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1002/qj.3179" target="_blank" >https://doi.org/10.1002/qj.3179</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/qj.3179" target="_blank" >10.1002/qj.3179</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Survey of data assimilation methods for convective‐scale numerical weather prediction at operational centres
Popis výsledku v původním jazyce
Data assimilation methods for convective-scale numerical weather prediction at operational centres are surveyed in this paper. The operational methods include variational methods (3D-Var and 4D-Var), ensemble methods (LETKF) and hybrids between variational and ensemble methods (3DEnVar and 4DEnVar). At several of the operational centres, other assimilation algorithms, like latent heat nudging, are additionally applied to improve the model initial state, with emphasis on convective scales. It is demonstrated that the quality of forecasts based on initial data from convective-scale data assimilation is significantly better than the quality of forecasts from simple downscaling of larger-scale initial data. The duration of positive impact depends however on the weather situation, the size of the computational domain and the data that are assimilated. It is furthermore shown that more-advanced methods applied at convective scales provide improvements compared to simpler methods. This motivates continued research and development in convective-scale data assimilation. Challenges in research and development for improvements of convective-scale data assimilation are also reviewed and discussed in this paper. The difficulty of handling the wide range of spatial and temporal scales makes development of multi-scale assimilation methods and space-time covariance localization techniques important. Improved utilization of observations is also important. In order to extract more information from existing observing systems of convective-scale phenomena, for example weather radar data and satellite image data, it is necessary to provide improved statistical descriptions of the observation errors associated with these observations.
Název v anglickém jazyce
Survey of data assimilation methods for convective‐scale numerical weather prediction at operational centres
Popis výsledku anglicky
Data assimilation methods for convective-scale numerical weather prediction at operational centres are surveyed in this paper. The operational methods include variational methods (3D-Var and 4D-Var), ensemble methods (LETKF) and hybrids between variational and ensemble methods (3DEnVar and 4DEnVar). At several of the operational centres, other assimilation algorithms, like latent heat nudging, are additionally applied to improve the model initial state, with emphasis on convective scales. It is demonstrated that the quality of forecasts based on initial data from convective-scale data assimilation is significantly better than the quality of forecasts from simple downscaling of larger-scale initial data. The duration of positive impact depends however on the weather situation, the size of the computational domain and the data that are assimilated. It is furthermore shown that more-advanced methods applied at convective scales provide improvements compared to simpler methods. This motivates continued research and development in convective-scale data assimilation. Challenges in research and development for improvements of convective-scale data assimilation are also reviewed and discussed in this paper. The difficulty of handling the wide range of spatial and temporal scales makes development of multi-scale assimilation methods and space-time covariance localization techniques important. Improved utilization of observations is also important. In order to extract more information from existing observing systems of convective-scale phenomena, for example weather radar data and satellite image data, it is necessary to provide improved statistical descriptions of the observation errors associated with these observations.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10509 - Meteorology and atmospheric sciences
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Quarterly Journal of the Royal Meteorological Society
ISSN
0035-9009
e-ISSN
1477-870X
Svazek periodika
144
Číslo periodika v rámci svazku
713
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
39
Strana od-do
1218-1256
Kód UT WoS článku
000445200400017
EID výsledku v databázi Scopus
2-s2.0-85044433626