Using satellite data and data fusion techniques for air quality mapping
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00020699%3A_____%2F18%3AN0000155" target="_blank" >RIV/00020699:_____/18:N0000155 - isvavai.cz</a>
Výsledek na webu
<a href="https://meetingorganizer.copernicus.org/EGU2018/EGU2018-12392.pdf" target="_blank" >https://meetingorganizer.copernicus.org/EGU2018/EGU2018-12392.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Using satellite data and data fusion techniques for air quality mapping
Popis výsledku v původním jazyce
Poster at EGU General Assembly 2018, 7–12 April 2018, Vienna, Austria. Air quality mapping plays an important role in informing the public about air pollution levels in various areas. For this purpose different sources of air quality data can be utilized, in particular in-situ measurements, air quality models and satellite observations. However, none of these data sources is fully sufficient for mapping purposes on its own due to either substantial data gaps, insufficient spatial resolution or large uncertainties.Withinthescopeof the SAMIRA (SAtellite based Monitoring Initiative for Regional Air quality) project, we have aimed to combine these different data sources using data fusion techniques to provide more accurate information within air quality mapping. We present first results of the on-going project where we applied multiple linear regression and spatial interpolation of its residuals (residual kriging) to combine data from in-situ measurements, chemical transport models and satellite observations over the Czech Republic and a major part of Europe. We examined mainly three pollutants (NO2, PM10 and PM2.5) at different temporal resolutions (annual, daily, hourly).
Název v anglickém jazyce
Using satellite data and data fusion techniques for air quality mapping
Popis výsledku anglicky
Poster at EGU General Assembly 2018, 7–12 April 2018, Vienna, Austria. Air quality mapping plays an important role in informing the public about air pollution levels in various areas. For this purpose different sources of air quality data can be utilized, in particular in-situ measurements, air quality models and satellite observations. However, none of these data sources is fully sufficient for mapping purposes on its own due to either substantial data gaps, insufficient spatial resolution or large uncertainties.Withinthescopeof the SAMIRA (SAtellite based Monitoring Initiative for Regional Air quality) project, we have aimed to combine these different data sources using data fusion techniques to provide more accurate information within air quality mapping. We present first results of the on-going project where we applied multiple linear regression and spatial interpolation of its residuals (residual kriging) to combine data from in-situ measurements, chemical transport models and satellite observations over the Czech Republic and a major part of Europe. We examined mainly three pollutants (NO2, PM10 and PM2.5) at different temporal resolutions (annual, daily, hourly).
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
10509 - Meteorology and atmospheric sciences
Návaznosti výsledku
Projekt
—
Návaznosti
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů