Climate response of Douglas fir reveals recently increased sensitivity to drought stress in Central Europe
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00020702%3A_____%2F19%3AN0000037" target="_blank" >RIV/00020702:_____/19:N0000037 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/1999-4907/10/2/97" target="_blank" >https://www.mdpi.com/1999-4907/10/2/97</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/f10020097" target="_blank" >10.3390/f10020097</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Climate response of Douglas fir reveals recently increased sensitivity to drought stress in Central Europe
Popis výsledku v původním jazyce
Research Highlights: In Central Europe, Douglas fir became more responsive to summer drought in recent years. Background and Objectives: Until now, Douglas fir has been considered a tree species resistant to drought. However, how Douglas fir will be able to cope with the increasing frequency and intensity of summer heat waves remains a question. The long-term variability in the climate response of Douglas fir in Central European conditions has not been fully explored. The aim of the study was to identify climatic factors controlling the stem radial growth of Douglas fir and Norway spruce, and to examine the temporal changes in tree responses to key climatic variables related to drought stress. Materials and Methods: We analysed the pattern of the climate-growth relationship of Douglas fir and Norway spruce, growing in mixed stands distributed between 260 and 600 m above sea level, which corresponds with the altitudinal zone of intensive spruce dieback in the Czech Republic. Nine-site tree-ring-width chronologies were developed for each tree species. Pointer year analysis and correlation analysis in combination with principal component analysis were used to identify climatic factors limiting their growth. Moving correlation function was computed to assess temporal changes of the climate-growth relationship. Results: In the entire 1961-2015 period, growth of both species was positively related to summer precipitation. The response to temperature differed between species. While spruce was negatively affected by the temperatures in summer months, the increments of Douglas fir were positively correlated with the temperatures in February and March. However, moving correlation analysis revealed recently increasing sensitivity to summer temperatures also for Douglas fir. Higher responsiveness of Douglas fir to drought was also revealed by the increasing frequency of negative pointer years in the 2003-2015 period. Conclusions: The recommendations of Douglas fir as a suitable alternative tree species for declining spruce stands at lower altitudes must be regarded with caution.
Název v anglickém jazyce
Climate response of Douglas fir reveals recently increased sensitivity to drought stress in Central Europe
Popis výsledku anglicky
Research Highlights: In Central Europe, Douglas fir became more responsive to summer drought in recent years. Background and Objectives: Until now, Douglas fir has been considered a tree species resistant to drought. However, how Douglas fir will be able to cope with the increasing frequency and intensity of summer heat waves remains a question. The long-term variability in the climate response of Douglas fir in Central European conditions has not been fully explored. The aim of the study was to identify climatic factors controlling the stem radial growth of Douglas fir and Norway spruce, and to examine the temporal changes in tree responses to key climatic variables related to drought stress. Materials and Methods: We analysed the pattern of the climate-growth relationship of Douglas fir and Norway spruce, growing in mixed stands distributed between 260 and 600 m above sea level, which corresponds with the altitudinal zone of intensive spruce dieback in the Czech Republic. Nine-site tree-ring-width chronologies were developed for each tree species. Pointer year analysis and correlation analysis in combination with principal component analysis were used to identify climatic factors limiting their growth. Moving correlation function was computed to assess temporal changes of the climate-growth relationship. Results: In the entire 1961-2015 period, growth of both species was positively related to summer precipitation. The response to temperature differed between species. While spruce was negatively affected by the temperatures in summer months, the increments of Douglas fir were positively correlated with the temperatures in February and March. However, moving correlation analysis revealed recently increasing sensitivity to summer temperatures also for Douglas fir. Higher responsiveness of Douglas fir to drought was also revealed by the increasing frequency of negative pointer years in the 2003-2015 period. Conclusions: The recommendations of Douglas fir as a suitable alternative tree species for declining spruce stands at lower altitudes must be regarded with caution.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
40102 - Forestry
Návaznosti výsledku
Projekt
<a href="/cs/project/QJ1520299" target="_blank" >QJ1520299: Uplatnění douglasky tisolisté v lesním hospodářství ČR</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Forests
ISSN
1999-4907
e-ISSN
—
Svazek periodika
10
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
17
Strana od-do
97
Kód UT WoS článku
000460744000021
EID výsledku v databázi Scopus
—