Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

What weather variables are important for wet and slab avalanches under a changing climate in low altitude mountain range in Czechia?

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00020711%3A_____%2F22%3A10154892" target="_blank" >RIV/00020711:_____/22:10154892 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://nhess.copernicus.org/articles/22/3501/2022/nhess-22-3501-2022.pdf" target="_blank" >https://nhess.copernicus.org/articles/22/3501/2022/nhess-22-3501-2022.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.5194/nhess-22-3501-2022" target="_blank" >10.5194/nhess-22-3501-2022</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    What weather variables are important for wet and slab avalanches under a changing climate in low altitude mountain range in Czechia?

  • Popis výsledku v původním jazyce

    Climate change impact on avalanches is ambiguous. Fewer, wetter, and smaller avalanches are expected in areas where snow cover is declining, while in higher-altitude areas where snowfall prevails, snow avalanches are frequently and spontaneously triggered. In the present paper, we (1) analyse trends in frequency, magnitude, and orientation of wet- and slab-avalanche activity during 59 winter seasons (1962-2021) and (2) detect the main meteorological and snow drivers of wet and slab avalanches for winter seasons from 1979 to 2020 using machine learning techniques - decision trees and random forest - with a tool that can balance the avalanche-day and non-avalanche-day dataset. In terms of avalanches, low to medium-high mountain ranges are neglected in the literature. Therefore we focused on the low-altitude Czech Krkonoše mountain range (Central Europe). The analysis is based on an avalanche dataset of 60 avalanche paths. The number and size of wet avalanches in February and March have increased, which is consistent with the current literature, while the number of slab avalanches has decreased in the last 3 decades. More wet-avalanche releases might be connected to winter season air temperature as it has risen by 1.8&apos;C since 1979.The random forest (RF) results indicate that wet avalanches are influenced by 3 d maximum and minimum air temperature, snow depth, wind speed, wind direction, and rainfall. Slab-avalanche activity is influenced by snow depth, rainfall, new snow, and wind speed. Based on the balanced RF method, air-temperature-related variables for slab avalanches were less important than rain- and snow-related variables. Surprisingly, the RF analysis revealed a less significant than expected relationship between the new-snow sum and slab-avalanche activity. Our analysis allows the use of the identified wet- and slab-avalanche driving variables to be included in the avalanche danger level alerts. Although it cannot replace operational forecasting, machine learning can allow for additional insights for the decision-making process to mitigate avalanche hazard.

  • Název v anglickém jazyce

    What weather variables are important for wet and slab avalanches under a changing climate in low altitude mountain range in Czechia?

  • Popis výsledku anglicky

    Climate change impact on avalanches is ambiguous. Fewer, wetter, and smaller avalanches are expected in areas where snow cover is declining, while in higher-altitude areas where snowfall prevails, snow avalanches are frequently and spontaneously triggered. In the present paper, we (1) analyse trends in frequency, magnitude, and orientation of wet- and slab-avalanche activity during 59 winter seasons (1962-2021) and (2) detect the main meteorological and snow drivers of wet and slab avalanches for winter seasons from 1979 to 2020 using machine learning techniques - decision trees and random forest - with a tool that can balance the avalanche-day and non-avalanche-day dataset. In terms of avalanches, low to medium-high mountain ranges are neglected in the literature. Therefore we focused on the low-altitude Czech Krkonoše mountain range (Central Europe). The analysis is based on an avalanche dataset of 60 avalanche paths. The number and size of wet avalanches in February and March have increased, which is consistent with the current literature, while the number of slab avalanches has decreased in the last 3 decades. More wet-avalanche releases might be connected to winter season air temperature as it has risen by 1.8&apos;C since 1979.The random forest (RF) results indicate that wet avalanches are influenced by 3 d maximum and minimum air temperature, snow depth, wind speed, wind direction, and rainfall. Slab-avalanche activity is influenced by snow depth, rainfall, new snow, and wind speed. Based on the balanced RF method, air-temperature-related variables for slab avalanches were less important than rain- and snow-related variables. Surprisingly, the RF analysis revealed a less significant than expected relationship between the new-snow sum and slab-avalanche activity. Our analysis allows the use of the identified wet- and slab-avalanche driving variables to be included in the avalanche danger level alerts. Although it cannot replace operational forecasting, machine learning can allow for additional insights for the decision-making process to mitigate avalanche hazard.

Klasifikace

  • Druh

    J<sub>ost</sub> - Ostatní články v recenzovaných periodicích

  • CEP obor

  • OECD FORD obor

    10509 - Meteorology and atmospheric sciences

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    NATURAL HAZARDS AND EARTH SYSTEM SCIENCES

  • ISSN

    1561-8633

  • e-ISSN

  • Svazek periodika

    22

  • Číslo periodika v rámci svazku

    10

  • Stát vydavatele periodika

    DE - Spolková republika Německo

  • Počet stran výsledku

    25

  • Strana od-do

    3501-3525

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus