Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

In Vitro Evaluation of Inflow Cannula Fixation Techniques in Left Ventricular Assist Device Surgery

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00023001%3A_____%2F17%3A00075932" target="_blank" >RIV/00023001:_____/17:00075932 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://onlinelibrary.wiley.com/doi/10.1111/aor.12735/abstract?system" target="_blank" >http://onlinelibrary.wiley.com/doi/10.1111/aor.12735/abstract?system</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1111/aor.12735" target="_blank" >10.1111/aor.12735</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    In Vitro Evaluation of Inflow Cannula Fixation Techniques in Left Ventricular Assist Device Surgery

  • Popis výsledku v původním jazyce

    The therapy of terminal heart failure with left ventricular assist devices has become a standard in cardiac surgery. Yet the surgical implantation technique is not standardized and differs from center to center. Complications associated with left ventricular assist device (LVAD) inflow cannula placement are thrombosis, suction events, and flow disturbances. Within this in vitro study we aimed to investigate if the fixation technique of the sewing ring has an impact on the position of the inflow cannula. For this in vitro study the HeartMate III LVAD (Thoratec Corporation, Pleasanton, CA, USA) was used. In five sessions, two approaches were considered for coring of the ventricle for LVAD inflow cannula insertion: sew-then-core and core-then-sew. In the sew-then-core technique, the sewing cuff is first affixed to the heart, usually with 8-16 interrupted pledgeted mattress sutures. Subsequently, a cylindrical knife is used to resect a cylindrical core of myocardium to permit cannula insertion. In the core-then-sew technique, the sequence is reversed such that the knife is used before the suture ring is affixed. When the sew-then-core technique is used, the mattress sutures may be placed with full-thickness bites that penetrate the endocardium (i.e., transmural stitching) or partial-thickness bites that do not penetrate the endocardium (i.e., epicardial stitching). When the core-then-sew technique is used, the suture is passed fully into the ventricular lumen and fed back through the cored hole, at which point the needle may be reinserted into the freshly cored myocardium such that it exits the epicardium (i.e., transmural stitching with back stitch) or not (i.e., transmural stitching without back stitch). These four different sewing ring fixation suturing techniques were tested by experienced surgeons to affix the sewing ring: transmural stitching, epicardial stitching, transmural stitching with back stitch, and transmural stitching without back stitch. The sewing ring was sewed onto a silicone dummy designed to simulate the left ventricle with standard 2-0 Ethibond sutures (Ethicon, Somerville, NY, USA). Afterward, the dummies were measured and documented via photography. In addition, porcine hearts were used to simulate the suturing techniques in a physiological setting. The setting of the inflow cannula is substantially influenced by the fixation method of the sewing ring. Epicardial stitching showed the best results with stable cannula fixation, minimal gap around the cannula and no contact between the sutures and sewing ring with blood. The method of transmural stitching without back stitch showed the worst results by creating the biggest epithelial gap between inflow cannula and tissue as well as proving the biggest surface for blood contact between sewing ring and sutures. In general, both sew-then-core techniques resulted in a greater degree of apposition between the cuff and epicardial tissue. Within the study we revealed that the surgical fixation of the sewing ring has a significant impact on the inflow cannula stability, position, and tissue apposition in LVAD implantation surgery. Epicardial stitching of the sewing ring provides the best results in order to prevent suction events as well as thrombosis formation.

  • Název v anglickém jazyce

    In Vitro Evaluation of Inflow Cannula Fixation Techniques in Left Ventricular Assist Device Surgery

  • Popis výsledku anglicky

    The therapy of terminal heart failure with left ventricular assist devices has become a standard in cardiac surgery. Yet the surgical implantation technique is not standardized and differs from center to center. Complications associated with left ventricular assist device (LVAD) inflow cannula placement are thrombosis, suction events, and flow disturbances. Within this in vitro study we aimed to investigate if the fixation technique of the sewing ring has an impact on the position of the inflow cannula. For this in vitro study the HeartMate III LVAD (Thoratec Corporation, Pleasanton, CA, USA) was used. In five sessions, two approaches were considered for coring of the ventricle for LVAD inflow cannula insertion: sew-then-core and core-then-sew. In the sew-then-core technique, the sewing cuff is first affixed to the heart, usually with 8-16 interrupted pledgeted mattress sutures. Subsequently, a cylindrical knife is used to resect a cylindrical core of myocardium to permit cannula insertion. In the core-then-sew technique, the sequence is reversed such that the knife is used before the suture ring is affixed. When the sew-then-core technique is used, the mattress sutures may be placed with full-thickness bites that penetrate the endocardium (i.e., transmural stitching) or partial-thickness bites that do not penetrate the endocardium (i.e., epicardial stitching). When the core-then-sew technique is used, the suture is passed fully into the ventricular lumen and fed back through the cored hole, at which point the needle may be reinserted into the freshly cored myocardium such that it exits the epicardium (i.e., transmural stitching with back stitch) or not (i.e., transmural stitching without back stitch). These four different sewing ring fixation suturing techniques were tested by experienced surgeons to affix the sewing ring: transmural stitching, epicardial stitching, transmural stitching with back stitch, and transmural stitching without back stitch. The sewing ring was sewed onto a silicone dummy designed to simulate the left ventricle with standard 2-0 Ethibond sutures (Ethicon, Somerville, NY, USA). Afterward, the dummies were measured and documented via photography. In addition, porcine hearts were used to simulate the suturing techniques in a physiological setting. The setting of the inflow cannula is substantially influenced by the fixation method of the sewing ring. Epicardial stitching showed the best results with stable cannula fixation, minimal gap around the cannula and no contact between the sutures and sewing ring with blood. The method of transmural stitching without back stitch showed the worst results by creating the biggest epithelial gap between inflow cannula and tissue as well as proving the biggest surface for blood contact between sewing ring and sutures. In general, both sew-then-core techniques resulted in a greater degree of apposition between the cuff and epicardial tissue. Within the study we revealed that the surgical fixation of the sewing ring has a significant impact on the inflow cannula stability, position, and tissue apposition in LVAD implantation surgery. Epicardial stitching of the sewing ring provides the best results in order to prevent suction events as well as thrombosis formation.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    30201 - Cardiac and Cardiovascular systems

Návaznosti výsledku

  • Projekt

  • Návaznosti

    N - Vyzkumna aktivita podporovana z neverejnych zdroju

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Artificial organs

  • ISSN

    0160-564X

  • e-ISSN

  • Svazek periodika

    41

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    4

  • Strana od-do

    272-275

  • Kód UT WoS článku

    000396014200009

  • EID výsledku v databázi Scopus