Supervised and unsupervised segmentation using superpixels, model estimation, and graph cut
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00023001%3A_____%2F17%3A00076325" target="_blank" >RIV/00023001:_____/17:00076325 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21230/17:00314379 RIV/60461373:22340/17:43913234
Výsledek na webu
<a href="https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging/volume-26/issue-6/061610/Supervised-and-unsupervised-segmentation-using-superpixels-model-estimation-and-graph/10.1117/1.JEI.26.6.061610.short" target="_blank" >https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging/volume-26/issue-6/061610/Supervised-and-unsupervised-segmentation-using-superpixels-model-estimation-and-graph/10.1117/1.JEI.26.6.061610.short</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1117/1.JEI.26.6.061610" target="_blank" >10.1117/1.JEI.26.6.061610</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Supervised and unsupervised segmentation using superpixels, model estimation, and graph cut
Popis výsledku v původním jazyce
Image segmentation is widely used as an initial phase of many image analysis tasks. It is often advantageous to first group pixels into compact, edge-respecting superpixels, because these reduce the size of the segmentation problem and thus the segmentation time by an order of magnitudes. In addition, features calculated from superpixel regions are more robust than features calculated from fixed pixel neighborhoods. We present a fast and general multiclass image segmentation method consisting of the following steps: (i) computation of superpixels; (ii) extraction of superpixel-based descriptors; (iii) calculating image-based class probabilities in a supervised or unsupervised manner; and (iv) regularized superpixel classification using graph cut. We apply this segmentation pipeline to five real-world medical imaging applications and compare the results with three baseline methods: pixelwise graph cut segmentation, supertexton-based segmentation, and classical superpixel-based segmentation. On all datasets, we outperform the baseline results. We also show that unsupervised segmentation is surprisingly efficient in many situations. Unsupervised segmentation provides similar results to the supervised method but does not require manually annotated training data, which is often expensive to obtain.
Název v anglickém jazyce
Supervised and unsupervised segmentation using superpixels, model estimation, and graph cut
Popis výsledku anglicky
Image segmentation is widely used as an initial phase of many image analysis tasks. It is often advantageous to first group pixels into compact, edge-respecting superpixels, because these reduce the size of the segmentation problem and thus the segmentation time by an order of magnitudes. In addition, features calculated from superpixel regions are more robust than features calculated from fixed pixel neighborhoods. We present a fast and general multiclass image segmentation method consisting of the following steps: (i) computation of superpixels; (ii) extraction of superpixel-based descriptors; (iii) calculating image-based class probabilities in a supervised or unsupervised manner; and (iv) regularized superpixel classification using graph cut. We apply this segmentation pipeline to five real-world medical imaging applications and compare the results with three baseline methods: pixelwise graph cut segmentation, supertexton-based segmentation, and classical superpixel-based segmentation. On all datasets, we outperform the baseline results. We also show that unsupervised segmentation is surprisingly efficient in many situations. Unsupervised segmentation provides similar results to the supervised method but does not require manually annotated training data, which is often expensive to obtain.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
30202 - Endocrinology and metabolism (including diabetes, hormones)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of electronic imaging
ISSN
1017-9909
e-ISSN
—
Svazek periodika
26
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
17
Strana od-do
"art. no. 061610"
Kód UT WoS článku
000419961800012
EID výsledku v databázi Scopus
—