Kinetic characteristics of propofol-induced inhibition of electron-transfer chain and fatty acid oxidation in human and rodent skeletal and cardiac muscles
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00023001%3A_____%2F19%3A00078736" target="_blank" >RIV/00023001:_____/19:00078736 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00064173:_____/19:N0000044 RIV/00023884:_____/19:00008542 RIV/00216208:11120/19:43918870
Výsledek na webu
<a href="https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0217254&type=printable" target="_blank" >https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0217254&type=printable</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1371/journal.pone.0217254" target="_blank" >10.1371/journal.pone.0217254</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Kinetic characteristics of propofol-induced inhibition of electron-transfer chain and fatty acid oxidation in human and rodent skeletal and cardiac muscles
Popis výsledku v původním jazyce
Introduction Propofol causes a profound inhibition of fatty acid oxidation and reduces spare electron transfer chain capacity in a range of human and rodent cells and tissues-a feature that might be related to the pathogenesis of Propofol Infusion Syndrome. We aimed to explore the mechanism of propofol-induced alteration of bioenergetic pathways by describing its kinetic characteristics. Methods We obtained samples of skeletal and cardiac muscle from Wistar rat (n = 3) and human subjects: vastus lateralis from hip surgery patients (n = 11) and myocardium from brain-dead organ donors (n = 10). We assessed mitochondrial functional indices using standard SUIT protocol and high resolution respirometry in fresh tissue homogenates with or without shortterm exposure to a range of propofol concentration (2.5-100 μg/ml). After finding concentrations of propofol causing partial inhibition of a particular pathways, we used that concentration to construct kinetic curves by plotting oxygen flux against substrate concentration during its stepwise titration in the presence or absence of propofol. By spectrophotometry we also measured the influence of the same propofol concentrations on the activity of isolated respiratory complexes. Results We found that human muscle and cardiac tissues are more sensitive to propofol-mediated inhibition of bioenergetic pathways than rat's tissue. In human homogenates, palmitoyl carnitine- driven respiration was inhibited at much lower concentrations of propofol than that required for a reduction of electron transfer chain capacity, suggesting FAO inhibition mechanism different from downstream limitation or carnitine-palmitoyl transferase-1 inhibition. Inhibition of Complex I was characterised by more marked reduction of Vmax, in keeping with non-competitive nature of the inhibition and the pattern was similar to the inhibition of Complex II or electron transfer chain capacity. There was neither inhibition of Complex IV nor increased leak through inner mitochondrial membrane with up to 100 μg/ml of propofol. If measured in isolation by spectrophotometry, propofol 10 μg/ml did not affect the activity of any respiratory complexes. Conclusion In human skeletal and heart muscle homogenates, propofol in concentrations that are achieved in propofol-anaesthetized patients, causes a direct inhibition of fatty acid oxidation, in addition to inhibiting flux of electrons through inner mitochondrial membrane. The inhibition is more marked in human as compared to rodent tissues. © 2019 Urban et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Název v anglickém jazyce
Kinetic characteristics of propofol-induced inhibition of electron-transfer chain and fatty acid oxidation in human and rodent skeletal and cardiac muscles
Popis výsledku anglicky
Introduction Propofol causes a profound inhibition of fatty acid oxidation and reduces spare electron transfer chain capacity in a range of human and rodent cells and tissues-a feature that might be related to the pathogenesis of Propofol Infusion Syndrome. We aimed to explore the mechanism of propofol-induced alteration of bioenergetic pathways by describing its kinetic characteristics. Methods We obtained samples of skeletal and cardiac muscle from Wistar rat (n = 3) and human subjects: vastus lateralis from hip surgery patients (n = 11) and myocardium from brain-dead organ donors (n = 10). We assessed mitochondrial functional indices using standard SUIT protocol and high resolution respirometry in fresh tissue homogenates with or without shortterm exposure to a range of propofol concentration (2.5-100 μg/ml). After finding concentrations of propofol causing partial inhibition of a particular pathways, we used that concentration to construct kinetic curves by plotting oxygen flux against substrate concentration during its stepwise titration in the presence or absence of propofol. By spectrophotometry we also measured the influence of the same propofol concentrations on the activity of isolated respiratory complexes. Results We found that human muscle and cardiac tissues are more sensitive to propofol-mediated inhibition of bioenergetic pathways than rat's tissue. In human homogenates, palmitoyl carnitine- driven respiration was inhibited at much lower concentrations of propofol than that required for a reduction of electron transfer chain capacity, suggesting FAO inhibition mechanism different from downstream limitation or carnitine-palmitoyl transferase-1 inhibition. Inhibition of Complex I was characterised by more marked reduction of Vmax, in keeping with non-competitive nature of the inhibition and the pattern was similar to the inhibition of Complex II or electron transfer chain capacity. There was neither inhibition of Complex IV nor increased leak through inner mitochondrial membrane with up to 100 μg/ml of propofol. If measured in isolation by spectrophotometry, propofol 10 μg/ml did not affect the activity of any respiratory complexes. Conclusion In human skeletal and heart muscle homogenates, propofol in concentrations that are achieved in propofol-anaesthetized patients, causes a direct inhibition of fatty acid oxidation, in addition to inhibiting flux of electrons through inner mitochondrial membrane. The inhibition is more marked in human as compared to rodent tissues. © 2019 Urban et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10608 - Biochemistry and molecular biology
Návaznosti výsledku
Projekt
<a href="/cs/project/NV16-28663A" target="_blank" >NV16-28663A: Funkční elektrickou stimulací asistovaná bicyklová ergometrie u kriticky nemocných: vztah mezi fyziologií svalu a dlouhodobým funkčním výsledkem léčby</a><br>
Návaznosti
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
PLoS ONE [online]
ISSN
1932-6203
e-ISSN
—
Svazek periodika
14
Číslo periodika v rámci svazku
10
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
13
Strana od-do
"e0217254"
Kód UT WoS článku
000526704200001
EID výsledku v databázi Scopus
2-s2.0-85072938431