Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Thermal Imaging Detection System: A Case Study for Indoor Environments

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00023272%3A_____%2F23%3A10136358" target="_blank" >RIV/00023272:_____/23:10136358 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00216305:26110/23:PU149024

  • Výsledek na webu

    <a href="https://www.mdpi.com/1424-8220/23/18/7822" target="_blank" >https://www.mdpi.com/1424-8220/23/18/7822</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/s23187822" target="_blank" >10.3390/s23187822</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Thermal Imaging Detection System: A Case Study for Indoor Environments

  • Popis výsledku v původním jazyce

    Currently, there is an increasing need for reliable mechanisms for automatically detecting and localizing people-from performing a people-flow analysis in museums and controlling smart homes to guarding hazardous areas like railway platforms. A method for detecting people using FLIR Lepton 3.5 thermal cameras and Raspberry Pi 3B+ computers was developed. The method creates a control and capture library for the Lepton 3.5 and a new person-detection technique that uses the state-of-the-art YOLO (You Only Look Once) real-time object detector based on deep neural networks. A thermal unit with an automated configuration using Ansible encapsulated in a custom 3D-printed enclosure was used. The unit has applications in simple thermal detection based on the modeling of complex scenes with polygonal boundaries and multiple thermal camera monitoring. An easily deployable person-detection and -localization system based on thermal imaging that supports multiple cameras and can serve as an input for other systems that take actions by knowing the positions of people in monitored environments was created. The thermal detection system was tested on a people-flow analysis performed in the Czech National Museum in Prague. The contribution of the presented method is the development of a small and simple detection system that is easily mountable with wide indoor as well as outdoor applications. The novelty of the system is in the utilization of the YOLO model for thermal data.

  • Název v anglickém jazyce

    Thermal Imaging Detection System: A Case Study for Indoor Environments

  • Popis výsledku anglicky

    Currently, there is an increasing need for reliable mechanisms for automatically detecting and localizing people-from performing a people-flow analysis in museums and controlling smart homes to guarding hazardous areas like railway platforms. A method for detecting people using FLIR Lepton 3.5 thermal cameras and Raspberry Pi 3B+ computers was developed. The method creates a control and capture library for the Lepton 3.5 and a new person-detection technique that uses the state-of-the-art YOLO (You Only Look Once) real-time object detector based on deep neural networks. A thermal unit with an automated configuration using Ansible encapsulated in a custom 3D-printed enclosure was used. The unit has applications in simple thermal detection based on the modeling of complex scenes with polygonal boundaries and multiple thermal camera monitoring. An easily deployable person-detection and -localization system based on thermal imaging that supports multiple cameras and can serve as an input for other systems that take actions by knowing the positions of people in monitored environments was created. The thermal detection system was tested on a people-flow analysis performed in the Czech National Museum in Prague. The contribution of the presented method is the development of a small and simple detection system that is easily mountable with wide indoor as well as outdoor applications. The novelty of the system is in the utilization of the YOLO model for thermal data.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LO1408" target="_blank" >LO1408: AdMaS UP - Pokročilé stavební materiály, konstrukce a technologie</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Sensors

  • ISSN

    1424-8220

  • e-ISSN

  • Svazek periodika

    23

  • Číslo periodika v rámci svazku

    18

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    19

  • Strana od-do

    1-19

  • Kód UT WoS článku

    001072501000001

  • EID výsledku v databázi Scopus