Thermal Imaging Detection System: A Case Study for Indoor Environments
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00023272%3A_____%2F23%3A10136358" target="_blank" >RIV/00023272:_____/23:10136358 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216305:26110/23:PU149024
Výsledek na webu
<a href="https://www.mdpi.com/1424-8220/23/18/7822" target="_blank" >https://www.mdpi.com/1424-8220/23/18/7822</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/s23187822" target="_blank" >10.3390/s23187822</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Thermal Imaging Detection System: A Case Study for Indoor Environments
Popis výsledku v původním jazyce
Currently, there is an increasing need for reliable mechanisms for automatically detecting and localizing people-from performing a people-flow analysis in museums and controlling smart homes to guarding hazardous areas like railway platforms. A method for detecting people using FLIR Lepton 3.5 thermal cameras and Raspberry Pi 3B+ computers was developed. The method creates a control and capture library for the Lepton 3.5 and a new person-detection technique that uses the state-of-the-art YOLO (You Only Look Once) real-time object detector based on deep neural networks. A thermal unit with an automated configuration using Ansible encapsulated in a custom 3D-printed enclosure was used. The unit has applications in simple thermal detection based on the modeling of complex scenes with polygonal boundaries and multiple thermal camera monitoring. An easily deployable person-detection and -localization system based on thermal imaging that supports multiple cameras and can serve as an input for other systems that take actions by knowing the positions of people in monitored environments was created. The thermal detection system was tested on a people-flow analysis performed in the Czech National Museum in Prague. The contribution of the presented method is the development of a small and simple detection system that is easily mountable with wide indoor as well as outdoor applications. The novelty of the system is in the utilization of the YOLO model for thermal data.
Název v anglickém jazyce
Thermal Imaging Detection System: A Case Study for Indoor Environments
Popis výsledku anglicky
Currently, there is an increasing need for reliable mechanisms for automatically detecting and localizing people-from performing a people-flow analysis in museums and controlling smart homes to guarding hazardous areas like railway platforms. A method for detecting people using FLIR Lepton 3.5 thermal cameras and Raspberry Pi 3B+ computers was developed. The method creates a control and capture library for the Lepton 3.5 and a new person-detection technique that uses the state-of-the-art YOLO (You Only Look Once) real-time object detector based on deep neural networks. A thermal unit with an automated configuration using Ansible encapsulated in a custom 3D-printed enclosure was used. The unit has applications in simple thermal detection based on the modeling of complex scenes with polygonal boundaries and multiple thermal camera monitoring. An easily deployable person-detection and -localization system based on thermal imaging that supports multiple cameras and can serve as an input for other systems that take actions by knowing the positions of people in monitored environments was created. The thermal detection system was tested on a people-flow analysis performed in the Czech National Museum in Prague. The contribution of the presented method is the development of a small and simple detection system that is easily mountable with wide indoor as well as outdoor applications. The novelty of the system is in the utilization of the YOLO model for thermal data.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/LO1408" target="_blank" >LO1408: AdMaS UP - Pokročilé stavební materiály, konstrukce a technologie</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Sensors
ISSN
1424-8220
e-ISSN
—
Svazek periodika
23
Číslo periodika v rámci svazku
18
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
19
Strana od-do
1-19
Kód UT WoS článku
001072501000001
EID výsledku v databázi Scopus
—