Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Machine Learning Detects Intraventricular Haemorrhage in Extremely Preterm Infants. Children

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00023698%3A_____%2F23%3AN0000001" target="_blank" >RIV/00023698:_____/23:N0000001 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.mdpi.com/2227-9067/10/6/917" target="_blank" >https://www.mdpi.com/2227-9067/10/6/917</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/children10060917" target="_blank" >10.3390/children10060917</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Machine Learning Detects Intraventricular Haemorrhage in Extremely Preterm Infants. Children

  • Popis výsledku v původním jazyce

    Objective: To test the potential utility of applying machine learning methods to regional cerebral (rcSO(2)) and peripheral oxygen saturation (SpO(2)) signals to detect brain injury in extremely preterm infants. Study design: A subset of infants enrolled in the Management of Hypotension in Preterm infants (HIP) trial were analysed (n = 46). All eligible infants were <28 weeks' gestational age and had continuous rcSO(2) measurements performed over the first 72 h and cranial ultrasounds performed during the first week after birth. SpO(2) data were available for 32 infants. The rcSO(2) and SpO(2) signals were preprocessed, and prolonged relative desaturations (PRDs; data-driven desaturation in the 2-to-15-min range) were extracted. Numerous quantitative features were extracted from the biosignals before and after the exclusion of the PRDs within the signals. PRDs were also evaluated as a stand-alone feature. A machine learning model was used to detect brain injury (intraventricular haemorrhage-IVH grade II-IV) using a leave-one-out cross-validation approach. Results: The area under the receiver operating characteristic curve (AUC) for the PRD rcSO(2) was 0.846 (95% CI: 0.720-0.948), outperforming the rcSO(2) threshold approach (AUC 0.593 95% CI 0.399-0.775). Neither the clinical model nor any of the SpO(2) models were significantly associated with brain injury. Conclusion: There was a significant association between the data-driven definition of PRDs in rcSO(2) and brain injury. Automated analysis of PRDs of the cerebral NIRS signal in extremely preterm infants may aid in better prediction of IVH compared with a threshold-based approach. Further investigation of the definition of the extracted PRDs and an understanding of the physiology underlying these events are required.

  • Název v anglickém jazyce

    Machine Learning Detects Intraventricular Haemorrhage in Extremely Preterm Infants. Children

  • Popis výsledku anglicky

    Objective: To test the potential utility of applying machine learning methods to regional cerebral (rcSO(2)) and peripheral oxygen saturation (SpO(2)) signals to detect brain injury in extremely preterm infants. Study design: A subset of infants enrolled in the Management of Hypotension in Preterm infants (HIP) trial were analysed (n = 46). All eligible infants were <28 weeks' gestational age and had continuous rcSO(2) measurements performed over the first 72 h and cranial ultrasounds performed during the first week after birth. SpO(2) data were available for 32 infants. The rcSO(2) and SpO(2) signals were preprocessed, and prolonged relative desaturations (PRDs; data-driven desaturation in the 2-to-15-min range) were extracted. Numerous quantitative features were extracted from the biosignals before and after the exclusion of the PRDs within the signals. PRDs were also evaluated as a stand-alone feature. A machine learning model was used to detect brain injury (intraventricular haemorrhage-IVH grade II-IV) using a leave-one-out cross-validation approach. Results: The area under the receiver operating characteristic curve (AUC) for the PRD rcSO(2) was 0.846 (95% CI: 0.720-0.948), outperforming the rcSO(2) threshold approach (AUC 0.593 95% CI 0.399-0.775). Neither the clinical model nor any of the SpO(2) models were significantly associated with brain injury. Conclusion: There was a significant association between the data-driven definition of PRDs in rcSO(2) and brain injury. Automated analysis of PRDs of the cerebral NIRS signal in extremely preterm infants may aid in better prediction of IVH compared with a threshold-based approach. Further investigation of the definition of the extracted PRDs and an understanding of the physiology underlying these events are required.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    30209 - Paediatrics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    V - Vyzkumna aktivita podporovana z jinych verejnych zdroju

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    CHILDREN

  • ISSN

    2227-9067

  • e-ISSN

    2227-9067

  • Svazek periodika

    10

  • Číslo periodika v rámci svazku

    6

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    13

  • Strana od-do

    917

  • Kód UT WoS článku

    001014311900001

  • EID výsledku v databázi Scopus

    2-s2.0-85163615447