Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Patient-specific surrogate model to predict pelvic floor dynamics during vaginal delivery

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00023698%3A_____%2F24%3AN0000017" target="_blank" >RIV/00023698:_____/24:N0000017 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00216208:11120/24:43927558 RIV/49777513:23640/24:43972971

  • Výsledek na webu

    <a href="https://pubmed.ncbi.nlm.nih.gov/39298872/" target="_blank" >https://pubmed.ncbi.nlm.nih.gov/39298872/</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jmbbm.2024.106736" target="_blank" >10.1016/j.jmbbm.2024.106736</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Patient-specific surrogate model to predict pelvic floor dynamics during vaginal delivery

  • Popis výsledku v původním jazyce

    Childbirth is a challenging event that can lead to long-term consequences such as prolapse or incontinence. While computational models are widely used to mimic vaginal delivery, their integration into clinical practice is hindered by time constraints. The primary goal of this study is to introduce an artificial intelligence pipeline that leverages patient-specific surrogate modeling to predict pelvic floor injuries during vaginal delivery. A finite element-based machine learning approach was implemented to generate a dataset with information from finite element simulations. Thousands of childbirth simulations were conducted, varying the dimensions of the pelvic floor muscles and the mechanical properties used for their characterization. Additionally, a mesh morphing algorithm was developed to obtain patient-specific models. Machine learning models, specifically tree-based algorithms such as Random Forest (RF) and Extreme Gradient Boosting, as well as Artificial Neural Networks, were trained to predict the nodal coordinates of nodes within the pelvic floor, aiming to predict the muscle stretch during a critical interval. The results indicate that the RF model performs best, with a mean absolute error (MAE) of 0.086 mm and a mean absolute percentage error of 0.38%. Overall, more than 80% of the nodes have an error smaller than 0.1 mm. The MAE for the calculated stretch is equal to 0.0011. The implemented pipeline allows loading the trained model and making predictions in less than 11 s. This work demonstrates the feasibility of implementing a machine learning framework in clinical practice to predict potential maternal injuries and assist in medical-decision making.

  • Název v anglickém jazyce

    Patient-specific surrogate model to predict pelvic floor dynamics during vaginal delivery

  • Popis výsledku anglicky

    Childbirth is a challenging event that can lead to long-term consequences such as prolapse or incontinence. While computational models are widely used to mimic vaginal delivery, their integration into clinical practice is hindered by time constraints. The primary goal of this study is to introduce an artificial intelligence pipeline that leverages patient-specific surrogate modeling to predict pelvic floor injuries during vaginal delivery. A finite element-based machine learning approach was implemented to generate a dataset with information from finite element simulations. Thousands of childbirth simulations were conducted, varying the dimensions of the pelvic floor muscles and the mechanical properties used for their characterization. Additionally, a mesh morphing algorithm was developed to obtain patient-specific models. Machine learning models, specifically tree-based algorithms such as Random Forest (RF) and Extreme Gradient Boosting, as well as Artificial Neural Networks, were trained to predict the nodal coordinates of nodes within the pelvic floor, aiming to predict the muscle stretch during a critical interval. The results indicate that the RF model performs best, with a mean absolute error (MAE) of 0.086 mm and a mean absolute percentage error of 0.38%. Overall, more than 80% of the nodes have an error smaller than 0.1 mm. The MAE for the calculated stretch is equal to 0.0011. The implemented pipeline allows loading the trained model and making predictions in less than 11 s. This work demonstrates the feasibility of implementing a machine learning framework in clinical practice to predict potential maternal injuries and assist in medical-decision making.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    30214 - Obstetrics and gynaecology

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF17_048%2F0007280" target="_blank" >EF17_048/0007280: Aplikace moderních technologií v medicíně a průmyslu</a><br>

  • Návaznosti

    N - Vyzkumna aktivita podporovana z neverejnych zdroju

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS

  • ISSN

    1751-6161

  • e-ISSN

    1878-0180

  • Svazek periodika

    160

  • Číslo periodika v rámci svazku

    December

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    14

  • Strana od-do

    106736

  • Kód UT WoS článku

    001319125400001

  • EID výsledku v databázi Scopus

    2-s2.0-85203880448