Patient-specific surrogate model to predict pelvic floor dynamics during vaginal delivery
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00023698%3A_____%2F24%3AN0000017" target="_blank" >RIV/00023698:_____/24:N0000017 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11120/24:43927558 RIV/49777513:23640/24:43972971
Výsledek na webu
<a href="https://pubmed.ncbi.nlm.nih.gov/39298872/" target="_blank" >https://pubmed.ncbi.nlm.nih.gov/39298872/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jmbbm.2024.106736" target="_blank" >10.1016/j.jmbbm.2024.106736</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Patient-specific surrogate model to predict pelvic floor dynamics during vaginal delivery
Popis výsledku v původním jazyce
Childbirth is a challenging event that can lead to long-term consequences such as prolapse or incontinence. While computational models are widely used to mimic vaginal delivery, their integration into clinical practice is hindered by time constraints. The primary goal of this study is to introduce an artificial intelligence pipeline that leverages patient-specific surrogate modeling to predict pelvic floor injuries during vaginal delivery. A finite element-based machine learning approach was implemented to generate a dataset with information from finite element simulations. Thousands of childbirth simulations were conducted, varying the dimensions of the pelvic floor muscles and the mechanical properties used for their characterization. Additionally, a mesh morphing algorithm was developed to obtain patient-specific models. Machine learning models, specifically tree-based algorithms such as Random Forest (RF) and Extreme Gradient Boosting, as well as Artificial Neural Networks, were trained to predict the nodal coordinates of nodes within the pelvic floor, aiming to predict the muscle stretch during a critical interval. The results indicate that the RF model performs best, with a mean absolute error (MAE) of 0.086 mm and a mean absolute percentage error of 0.38%. Overall, more than 80% of the nodes have an error smaller than 0.1 mm. The MAE for the calculated stretch is equal to 0.0011. The implemented pipeline allows loading the trained model and making predictions in less than 11 s. This work demonstrates the feasibility of implementing a machine learning framework in clinical practice to predict potential maternal injuries and assist in medical-decision making.
Název v anglickém jazyce
Patient-specific surrogate model to predict pelvic floor dynamics during vaginal delivery
Popis výsledku anglicky
Childbirth is a challenging event that can lead to long-term consequences such as prolapse or incontinence. While computational models are widely used to mimic vaginal delivery, their integration into clinical practice is hindered by time constraints. The primary goal of this study is to introduce an artificial intelligence pipeline that leverages patient-specific surrogate modeling to predict pelvic floor injuries during vaginal delivery. A finite element-based machine learning approach was implemented to generate a dataset with information from finite element simulations. Thousands of childbirth simulations were conducted, varying the dimensions of the pelvic floor muscles and the mechanical properties used for their characterization. Additionally, a mesh morphing algorithm was developed to obtain patient-specific models. Machine learning models, specifically tree-based algorithms such as Random Forest (RF) and Extreme Gradient Boosting, as well as Artificial Neural Networks, were trained to predict the nodal coordinates of nodes within the pelvic floor, aiming to predict the muscle stretch during a critical interval. The results indicate that the RF model performs best, with a mean absolute error (MAE) of 0.086 mm and a mean absolute percentage error of 0.38%. Overall, more than 80% of the nodes have an error smaller than 0.1 mm. The MAE for the calculated stretch is equal to 0.0011. The implemented pipeline allows loading the trained model and making predictions in less than 11 s. This work demonstrates the feasibility of implementing a machine learning framework in clinical practice to predict potential maternal injuries and assist in medical-decision making.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
30214 - Obstetrics and gynaecology
Návaznosti výsledku
Projekt
<a href="/cs/project/EF17_048%2F0007280" target="_blank" >EF17_048/0007280: Aplikace moderních technologií v medicíně a průmyslu</a><br>
Návaznosti
N - Vyzkumna aktivita podporovana z neverejnych zdroju
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS
ISSN
1751-6161
e-ISSN
1878-0180
Svazek periodika
160
Číslo periodika v rámci svazku
December
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
14
Strana od-do
106736
Kód UT WoS článku
001319125400001
EID výsledku v databázi Scopus
2-s2.0-85203880448