Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Small-world bias of correlation networks: from brain to climate

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00023752%3A_____%2F17%3A43915451" target="_blank" >RIV/00023752:_____/17:43915451 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/67985807:_____/17:00473721 RIV/00023001:_____/17:00075930 RIV/00216208:11320/17:10361960

  • Výsledek na webu

    <a href="http://aip.scitation.org/doi/10.1063/1.4977951" target="_blank" >http://aip.scitation.org/doi/10.1063/1.4977951</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1063/1.4977951" target="_blank" >10.1063/1.4977951</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Small-world bias of correlation networks: from brain to climate

  • Popis výsledku v původním jazyce

    Complex systems are commonly characterized by the properties of their graph representation. Dynamical complex systems are then typically represented by a graph of temporal dependencies between time series of state variables of their subunits. It has been shown recently that graphs constructed in this way tend to have relatively clustered structure, potentially leading to spurious detection of small-world properties even in the case of systems with no or randomly distributed true interactions. However, the strength of this bias depends heavily on a range of parameters and its relevance for real-world data has not yet been established. In this work, we assess the relevance of the bias using two examples of multivariate time series recorded in natural complex systems. The first is the time series of local brain activity as measured by functional magnetic resonance imaging in resting healthy human subjects, the second is the time series of average monthly surface air temperature coming from a large reanalysis of climatological data over the period 1948 – 2012. In both cases, the clustering in the thresholded correlation graph is substantially higher compared to a realization of a density-matched random graph, while the shortest paths are relatively short, showing thus distinguishing features of small-world structure. However, a comparable or even stronger small-world properties were reproduced in correlation graphs of model processes with randomly scrambled interconnections. This suggests that the small-world properties of the correlation matrices of these real-world systems indeed do not reflect genuinely the properties of the underlying interaction structure, but rather result from the inherent properties of correlation matrix.

  • Název v anglickém jazyce

    Small-world bias of correlation networks: from brain to climate

  • Popis výsledku anglicky

    Complex systems are commonly characterized by the properties of their graph representation. Dynamical complex systems are then typically represented by a graph of temporal dependencies between time series of state variables of their subunits. It has been shown recently that graphs constructed in this way tend to have relatively clustered structure, potentially leading to spurious detection of small-world properties even in the case of systems with no or randomly distributed true interactions. However, the strength of this bias depends heavily on a range of parameters and its relevance for real-world data has not yet been established. In this work, we assess the relevance of the bias using two examples of multivariate time series recorded in natural complex systems. The first is the time series of local brain activity as measured by functional magnetic resonance imaging in resting healthy human subjects, the second is the time series of average monthly surface air temperature coming from a large reanalysis of climatological data over the period 1948 – 2012. In both cases, the clustering in the thresholded correlation graph is substantially higher compared to a realization of a density-matched random graph, while the shortest paths are relatively short, showing thus distinguishing features of small-world structure. However, a comparable or even stronger small-world properties were reproduced in correlation graphs of model processes with randomly scrambled interconnections. This suggests that the small-world properties of the correlation matrices of these real-world systems indeed do not reflect genuinely the properties of the underlying interaction structure, but rather result from the inherent properties of correlation matrix.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Chaos

  • ISSN

    1054-1500

  • e-ISSN

  • Svazek periodika

    27

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    31

  • Strana od-do

    "Article Number: 035812"

  • Kód UT WoS článku

    000400899300006

  • EID výsledku v databázi Scopus

    2-s2.0-85015619793