Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Methods for automatic detection of artifacts in microelectrode recordings

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00023752%3A_____%2F17%3A43918935" target="_blank" >RIV/00023752:_____/17:43918935 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/68407700:21230/17:00312858 RIV/00216208:11110/17:10363844 RIV/00064165:_____/17:10363844 RIV/00023884:_____/12:00007434

  • Výsledek na webu

    <a href="http://www.sciencedirect.com/science/article/pii/S0165027017302492?via%3Dihub" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0165027017302492?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jneumeth.2017.07.012" target="_blank" >10.1016/j.jneumeth.2017.07.012</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Methods for automatic detection of artifacts in microelectrode recordings

  • Popis výsledku v původním jazyce

    Background: Extracellular microelectrode recording (MER) is a prominent technique for studies of extracellular single-unit neuronal activity. In order to achieve robust results in more complex analysis pipelines, it is necessary to have high quality input data with a low amount of artifacts. We show that noise (mainly electromagnetic interference and motion artifacts) may affect more than 25% of the recording length in a clinical MER database. New method: We present several methods for automatic detection of noise in MER signals, based on (i) unsupervised detection of stationary segments, (ii) large peaks in the power spectral density, and (iii) a classifier based on multiple time- and frequency-domain features. We evaluate the proposed methods on a manually annotated database of 5735 ten-second MER signals from 58 Parkinson&apos;s disease patients. Comparison with existing methods: The existing methods for artifact detection in single-channel MER that have been rigorously tested, are based on unsupervised change-point detection. We show on an extensive real MER database that the presented techniques are better suited for the task of artifact identification and achieve much better results. Results: The best-performing classifiers (bagging and decision tree) achieved artifact classification accuracy of up to 89% on an unseen test set and outperformed the unsupervised techniques by 5–10%. This was close to the level of agreement among raters using manual annotation (93.5%). Conclusion: We conclude that the proposed methods are suitable for automatic MER denoising and may help in the efficient elimination of undesirable signal artifacts.

  • Název v anglickém jazyce

    Methods for automatic detection of artifacts in microelectrode recordings

  • Popis výsledku anglicky

    Background: Extracellular microelectrode recording (MER) is a prominent technique for studies of extracellular single-unit neuronal activity. In order to achieve robust results in more complex analysis pipelines, it is necessary to have high quality input data with a low amount of artifacts. We show that noise (mainly electromagnetic interference and motion artifacts) may affect more than 25% of the recording length in a clinical MER database. New method: We present several methods for automatic detection of noise in MER signals, based on (i) unsupervised detection of stationary segments, (ii) large peaks in the power spectral density, and (iii) a classifier based on multiple time- and frequency-domain features. We evaluate the proposed methods on a manually annotated database of 5735 ten-second MER signals from 58 Parkinson&apos;s disease patients. Comparison with existing methods: The existing methods for artifact detection in single-channel MER that have been rigorously tested, are based on unsupervised change-point detection. We show on an extensive real MER database that the presented techniques are better suited for the task of artifact identification and achieve much better results. Results: The best-performing classifiers (bagging and decision tree) achieved artifact classification accuracy of up to 89% on an unseen test set and outperformed the unsupervised techniques by 5–10%. This was close to the level of agreement among raters using manual annotation (93.5%). Conclusion: We conclude that the proposed methods are suitable for automatic MER denoising and may help in the efficient elimination of undesirable signal artifacts.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20205 - Automation and control systems

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Neuroscience Methods

  • ISSN

    0165-0270

  • e-ISSN

  • Svazek periodika

    290

  • Číslo periodika v rámci svazku

    October

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    13

  • Strana od-do

    39-51

  • Kód UT WoS článku

    000411776000005

  • EID výsledku v databázi Scopus

    2-s2.0-85026263634