An unsupervised multichannel artifact detection method for sleep EEG based on Riemannian geometry
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00023752%3A_____%2F19%3A43919712" target="_blank" >RIV/00023752:_____/19:43919712 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21230/19:00328194 RIV/68407700:21460/19:00328194 RIV/68407700:21730/19:00328194 RIV/00216208:11120/19:43917610
Výsledek na webu
<a href="https://www.mdpi.com/1424-8220/19/3/602" target="_blank" >https://www.mdpi.com/1424-8220/19/3/602</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/s19030602" target="_blank" >10.3390/s19030602</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
An unsupervised multichannel artifact detection method for sleep EEG based on Riemannian geometry
Popis výsledku v původním jazyce
In biomedical signal processing, we often face the problem of artifacts that distort the original signals. This concerns also sleep recordings, such as EEG. Artifacts may severely affect or even make impossible visual inspection, as well as automatic processing. Many proposed methods concentrate on certain artifact types. Therefore, artifact-free data are often obtained after sequential application of different methods. Moreover, single-channel approaches must be applied to all channels alternately. The aim of this study is to develop a multichannel artifact detection method for multichannel sleep EEG capable of rejecting different artifact types at once. The inspiration for the study is gained from recent advances in the field of Riemannian geometry. The method we propose is tested on real datasets. The performance of the proposed method is measured by comparing detection results with the expert labeling as a reference and evaluated against a simpler method based on Riemannian geometry that has previously been proposed, as well as against the state-of-the-art method FASTER. The obtained results prove the effectiveness of the proposed method.
Název v anglickém jazyce
An unsupervised multichannel artifact detection method for sleep EEG based on Riemannian geometry
Popis výsledku anglicky
In biomedical signal processing, we often face the problem of artifacts that distort the original signals. This concerns also sleep recordings, such as EEG. Artifacts may severely affect or even make impossible visual inspection, as well as automatic processing. Many proposed methods concentrate on certain artifact types. Therefore, artifact-free data are often obtained after sequential application of different methods. Moreover, single-channel approaches must be applied to all channels alternately. The aim of this study is to develop a multichannel artifact detection method for multichannel sleep EEG capable of rejecting different artifact types at once. The inspiration for the study is gained from recent advances in the field of Riemannian geometry. The method we propose is tested on real datasets. The performance of the proposed method is measured by comparing detection results with the expert labeling as a reference and evaluated against a simpler method based on Riemannian geometry that has previously been proposed, as well as against the state-of-the-art method FASTER. The obtained results prove the effectiveness of the proposed method.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
30404 - Biomaterials (as related to medical implants, devices, sensors)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Sensors
ISSN
1424-8220
e-ISSN
—
Svazek periodika
19
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
15
Strana od-do
"Article Number: 602"
Kód UT WoS článku
000459941200165
EID výsledku v databázi Scopus
2-s2.0-85060906213