Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Typicality of functional connectivity robustly captures motion artifacts in rs‐fMRI across datasets, atlases, and preprocessing pipelines

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00023752%3A_____%2F20%3A43920297" target="_blank" >RIV/00023752:_____/20:43920297 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/68407700:21230/20:00345914 RIV/00023001:_____/20:00080324 RIV/60461373:22340/20:43926020

  • Výsledek na webu

    <a href="https://onlinelibrary.wiley.com/doi/10.1002/hbm.25195" target="_blank" >https://onlinelibrary.wiley.com/doi/10.1002/hbm.25195</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/hbm.25195" target="_blank" >10.1002/hbm.25195</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Typicality of functional connectivity robustly captures motion artifacts in rs‐fMRI across datasets, atlases, and preprocessing pipelines

  • Popis výsledku v původním jazyce

    Functional connectivity analysis of resting-state fMRI data has recently become one of the most common approaches to characterizing individual brain function. It has been widely suggested that the functional connectivity matrix is a useful approximate representation of the brain&apos;s connectivity, potentially providing behaviorally or clinically relevant markers. However, functional connectivity estimates are known to be detrimentally affected by various artifacts, including those due to in-scanner head motion. Moreover, as individual functional connections generally covary only very weakly with head motion estimates, motion influence is difficult to quantify robustly, and prone to be neglected in practice. Although the use of individual estimates of head motion, or group-level correlation of motion and functional connectivity has been suggested, a sufficiently sensitive measure of individual functional connectivity quality has not yet been established. We propose a new intuitive summary index, Typicality of Functional Connectivity, to capture deviations from standard brain functional connectivity patterns. In a resting-state fMRI dataset of 245 healthy subjects, this measure was significantly correlated with individual head motion metrics. The results were further robustly reproduced across atlas granularity, preprocessing options, and other datasets, including 1,081 subjects from the Human Connectome Project. In principle, Typicality of Functional Connectivity should be sensitive also to other types of artifacts, processing errors, and possibly also brain pathology, allowing extensive use in data quality screening and quantification in functional connectivity studies as well as methodological investigations.

  • Název v anglickém jazyce

    Typicality of functional connectivity robustly captures motion artifacts in rs‐fMRI across datasets, atlases, and preprocessing pipelines

  • Popis výsledku anglicky

    Functional connectivity analysis of resting-state fMRI data has recently become one of the most common approaches to characterizing individual brain function. It has been widely suggested that the functional connectivity matrix is a useful approximate representation of the brain&apos;s connectivity, potentially providing behaviorally or clinically relevant markers. However, functional connectivity estimates are known to be detrimentally affected by various artifacts, including those due to in-scanner head motion. Moreover, as individual functional connections generally covary only very weakly with head motion estimates, motion influence is difficult to quantify robustly, and prone to be neglected in practice. Although the use of individual estimates of head motion, or group-level correlation of motion and functional connectivity has been suggested, a sufficiently sensitive measure of individual functional connectivity quality has not yet been established. We propose a new intuitive summary index, Typicality of Functional Connectivity, to capture deviations from standard brain functional connectivity patterns. In a resting-state fMRI dataset of 245 healthy subjects, this measure was significantly correlated with individual head motion metrics. The results were further robustly reproduced across atlas granularity, preprocessing options, and other datasets, including 1,081 subjects from the Human Connectome Project. In principle, Typicality of Functional Connectivity should be sensitive also to other types of artifacts, processing errors, and possibly also brain pathology, allowing extensive use in data quality screening and quantification in functional connectivity studies as well as methodological investigations.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LO1611" target="_blank" >LO1611: Udržitelnost pro Národní ústav duševního zdraví</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Human Brain Mapping

  • ISSN

    1065-9471

  • e-ISSN

  • Svazek periodika

    41

  • Číslo periodika v rámci svazku

    18

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    16

  • Strana od-do

    5325-5340

  • Kód UT WoS článku

    000565321100001

  • EID výsledku v databázi Scopus

    2-s2.0-85090109459