A Dynamical Systems Approach to Spectral Music: Modeling the Role of Roughness and Inharmonicity in Perception of Musical Tension
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00023752%3A_____%2F20%3A43920330" target="_blank" >RIV/00023752:_____/20:43920330 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/67985807:_____/20:00525250
Výsledek na webu
<a href="https://www.frontiersin.org/articles/10.3389/fams.2020.00018/full" target="_blank" >https://www.frontiersin.org/articles/10.3389/fams.2020.00018/full</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3389/fams.2020.00018" target="_blank" >10.3389/fams.2020.00018</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Dynamical Systems Approach to Spectral Music: Modeling the Role of Roughness and Inharmonicity in Perception of Musical Tension
Popis výsledku v původním jazyce
Tension-resolution patterns seem to play a dominant role in shaping our emotional experience of music. In traditional Western music, these patterns are mainly expressed through harmony and melody. However, many contemporary musical compositions employ sound materials lacking any perceivable pitch structure, rendering the two compositional devices useless. Still, composers like Tristan Murail or Gérard Grisey manage to implement the patterns by manipulating spectral attributes like roughness and inharmonicity. However, in order to understand the music of theirs and the other proponents of the so-called “spectral music,” one has to eschew traditional categories like pitch, harmony, and tonality in favor of a lower-level, more general representation of sound-which, unfortunately, music-psychological research has been reluctant to do. In the present study, motivated by recent advances in music-theoretical and neuroscientific research into a the highly related phenomenon of dissonance, we propose a neurodynamical model of musical tension based on a spectral representation of sound which reproduces existing empirical results on spectral correlates of tension. By virtue of being neurodynamical, the proposed model is generative in the sense that it can simulate responses to arbitrary sounds.
Název v anglickém jazyce
A Dynamical Systems Approach to Spectral Music: Modeling the Role of Roughness and Inharmonicity in Perception of Musical Tension
Popis výsledku anglicky
Tension-resolution patterns seem to play a dominant role in shaping our emotional experience of music. In traditional Western music, these patterns are mainly expressed through harmony and melody. However, many contemporary musical compositions employ sound materials lacking any perceivable pitch structure, rendering the two compositional devices useless. Still, composers like Tristan Murail or Gérard Grisey manage to implement the patterns by manipulating spectral attributes like roughness and inharmonicity. However, in order to understand the music of theirs and the other proponents of the so-called “spectral music,” one has to eschew traditional categories like pitch, harmony, and tonality in favor of a lower-level, more general representation of sound-which, unfortunately, music-psychological research has been reluctant to do. In the present study, motivated by recent advances in music-theoretical and neuroscientific research into a the highly related phenomenon of dissonance, we propose a neurodynamical model of musical tension based on a spectral representation of sound which reproduces existing empirical results on spectral correlates of tension. By virtue of being neurodynamical, the proposed model is generative in the sense that it can simulate responses to arbitrary sounds.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
30103 - Neurosciences (including psychophysiology)
Návaznosti výsledku
Projekt
<a href="/cs/project/LO1611" target="_blank" >LO1611: Udržitelnost pro Národní ústav duševního zdraví</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Frontiers in Applied Mathematics and Statistics
ISSN
2297-4687
e-ISSN
—
Svazek periodika
6
Číslo periodika v rámci svazku
18
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
14
Strana od-do
1-14
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85087011276