Identifying patient-specific behaviors to understand illness trajectories and predict relapses in bipolar disorder using passive sensing and deep anomaly detection: protocol for a contactless cohort study
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00023752%3A_____%2F22%3A43920861" target="_blank" >RIV/00023752:_____/22:43920861 - isvavai.cz</a>
Výsledek na webu
<a href="https://bmcpsychiatry.biomedcentral.com/articles/10.1186/s12888-022-03923-1" target="_blank" >https://bmcpsychiatry.biomedcentral.com/articles/10.1186/s12888-022-03923-1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1186/s12888-022-03923-1" target="_blank" >10.1186/s12888-022-03923-1</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Identifying patient-specific behaviors to understand illness trajectories and predict relapses in bipolar disorder using passive sensing and deep anomaly detection: protocol for a contactless cohort study
Popis výsledku v původním jazyce
Background Predictive models for mental disorders or behaviors (e.g., suicide) have been successfully developed at the level of populations, yet current demographic and clinical variables are neither sensitive nor specific enough for making individual clinical predictions. Forecasting episodes of illness is particularly relevant in bipolar disorder (BD), a mood disorder with high recurrence, disability, and suicide rates. Thus, to understand the dynamic changes involved in episode generation in BD, we propose to extract and interpret individual illness trajectories and patterns suggestive of relapse using passive sensing, nonlinear techniques, and deep anomaly detection. Here we describe the study we have designed to test this hypothesis and the rationale for its design. Method This is a protocol for a contactless cohort study in 200 adult BD patients. Participants will be followed for up to 2 years during which they will be monitored continuously using passive sensing, a wearable that collects multimodal physiological (heart rate variability) and objective (sleep, activity) data. Participants will complete (i) a comprehensive baseline assessment; (ii) weekly assessments; (iii) daily assessments using electronic rating scales. Data will be analyzed using nonlinear techniques and deep anomaly detection to forecast episodes of illness. Discussion This proposed contactless, large cohort study aims to obtain and combine high-dimensional, multimodal physiological, objective, and subjective data. Our work, by conceptualizing mood as a dynamic property of biological systems, will demonstrate the feasibility of incorporating individual variability in a model informing clinical trajectories and predicting relapse in BD.
Název v anglickém jazyce
Identifying patient-specific behaviors to understand illness trajectories and predict relapses in bipolar disorder using passive sensing and deep anomaly detection: protocol for a contactless cohort study
Popis výsledku anglicky
Background Predictive models for mental disorders or behaviors (e.g., suicide) have been successfully developed at the level of populations, yet current demographic and clinical variables are neither sensitive nor specific enough for making individual clinical predictions. Forecasting episodes of illness is particularly relevant in bipolar disorder (BD), a mood disorder with high recurrence, disability, and suicide rates. Thus, to understand the dynamic changes involved in episode generation in BD, we propose to extract and interpret individual illness trajectories and patterns suggestive of relapse using passive sensing, nonlinear techniques, and deep anomaly detection. Here we describe the study we have designed to test this hypothesis and the rationale for its design. Method This is a protocol for a contactless cohort study in 200 adult BD patients. Participants will be followed for up to 2 years during which they will be monitored continuously using passive sensing, a wearable that collects multimodal physiological (heart rate variability) and objective (sleep, activity) data. Participants will complete (i) a comprehensive baseline assessment; (ii) weekly assessments; (iii) daily assessments using electronic rating scales. Data will be analyzed using nonlinear techniques and deep anomaly detection to forecast episodes of illness. Discussion This proposed contactless, large cohort study aims to obtain and combine high-dimensional, multimodal physiological, objective, and subjective data. Our work, by conceptualizing mood as a dynamic property of biological systems, will demonstrate the feasibility of incorporating individual variability in a model informing clinical trajectories and predicting relapse in BD.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
30215 - Psychiatry
Návaznosti výsledku
Projekt
—
Návaznosti
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
BMC Psychiatry
ISSN
1471-244X
e-ISSN
—
Svazek periodika
22
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
8
Strana od-do
"Article Number: 288"
Kód UT WoS článku
000786345500001
EID výsledku v databázi Scopus
2-s2.0-85128645699