Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Natural language signatures of psilocybin microdosing

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00023752%3A_____%2F22%3A43920881" target="_blank" >RIV/00023752:_____/22:43920881 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/60461373:22330/22:43925422 RIV/60461373:22810/22:43925422

  • Výsledek na webu

    <a href="https://link.springer.com/article/10.1007/s00213-022-06170-0" target="_blank" >https://link.springer.com/article/10.1007/s00213-022-06170-0</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00213-022-06170-0" target="_blank" >10.1007/s00213-022-06170-0</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Natural language signatures of psilocybin microdosing

  • Popis výsledku v původním jazyce

    Rationale Serotonergic psychedelics are being studied as novel treatments for mental health disorders and as facilitators of improved well-being, mental function, and creativity. Recent studies have found mixed results concerning the effects of low doses of psychedelics (&quot;microdosing&quot;) on these domains. However, microdosing is generally investigated using instruments designed to assess larger doses of psychedelics, which might lack sensitivity and specificity for this purpose. Objectives Determine whether unconstrained speech contains signatures capable of identifying the acute effects of psilocybin microdoses. Methods Natural speech under psilocybin microdoses (0.5 g of psilocybin mushrooms) was acquired from thirty-four healthy adult volunteers (11 females: 32.09 +/- 3.53 years; 23 males: 30.87 +/- 4.64 years) following a double-blind and placebo-controlled experimental design with two measurement weeks per participant. On Wednesdays and Fridays of each week, participants consumed either the active dose (psilocybin) or the placebo (edible mushrooms). Features of interest were defined based on variables known to be affected by higher doses: verbosity, semantic variability, and sentiment scores. Machine learning models were used to discriminate between conditions. Classifiers were trained and tested using stratified cross-validation to compute the AUC and p-values. Results Except for semantic variability, these metrics presented significant differences between a typical active microdose and the inactive placebo condition. Machine learning classifiers were capable of distinguishing between conditions with high accuracy (AUC approximate to 0.8). Conclusions These results constitute first evidence that low doses of serotonergic psychedelics can be identified from unconstrained natural speech, with potential for widely applicable, affordable, and ecologically valid monitoring of microdosing schedules.

  • Název v anglickém jazyce

    Natural language signatures of psilocybin microdosing

  • Popis výsledku anglicky

    Rationale Serotonergic psychedelics are being studied as novel treatments for mental health disorders and as facilitators of improved well-being, mental function, and creativity. Recent studies have found mixed results concerning the effects of low doses of psychedelics (&quot;microdosing&quot;) on these domains. However, microdosing is generally investigated using instruments designed to assess larger doses of psychedelics, which might lack sensitivity and specificity for this purpose. Objectives Determine whether unconstrained speech contains signatures capable of identifying the acute effects of psilocybin microdoses. Methods Natural speech under psilocybin microdoses (0.5 g of psilocybin mushrooms) was acquired from thirty-four healthy adult volunteers (11 females: 32.09 +/- 3.53 years; 23 males: 30.87 +/- 4.64 years) following a double-blind and placebo-controlled experimental design with two measurement weeks per participant. On Wednesdays and Fridays of each week, participants consumed either the active dose (psilocybin) or the placebo (edible mushrooms). Features of interest were defined based on variables known to be affected by higher doses: verbosity, semantic variability, and sentiment scores. Machine learning models were used to discriminate between conditions. Classifiers were trained and tested using stratified cross-validation to compute the AUC and p-values. Results Except for semantic variability, these metrics presented significant differences between a typical active microdose and the inactive placebo condition. Machine learning classifiers were capable of distinguishing between conditions with high accuracy (AUC approximate to 0.8). Conclusions These results constitute first evidence that low doses of serotonergic psychedelics can be identified from unconstrained natural speech, with potential for widely applicable, affordable, and ecologically valid monitoring of microdosing schedules.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    30104 - Pharmacology and pharmacy

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Psychopharmacology

  • ISSN

    0033-3158

  • e-ISSN

  • Svazek periodika

    239

  • Číslo periodika v rámci svazku

    9

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    12

  • Strana od-do

    2841-2852

  • Kód UT WoS článku

    000807942300001

  • EID výsledku v databázi Scopus

    2-s2.0-85131581931