Natural language signatures of psilocybin microdosing
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00023752%3A_____%2F22%3A43920881" target="_blank" >RIV/00023752:_____/22:43920881 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/60461373:22330/22:43925422 RIV/60461373:22810/22:43925422
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s00213-022-06170-0" target="_blank" >https://link.springer.com/article/10.1007/s00213-022-06170-0</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00213-022-06170-0" target="_blank" >10.1007/s00213-022-06170-0</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Natural language signatures of psilocybin microdosing
Popis výsledku v původním jazyce
Rationale Serotonergic psychedelics are being studied as novel treatments for mental health disorders and as facilitators of improved well-being, mental function, and creativity. Recent studies have found mixed results concerning the effects of low doses of psychedelics ("microdosing") on these domains. However, microdosing is generally investigated using instruments designed to assess larger doses of psychedelics, which might lack sensitivity and specificity for this purpose. Objectives Determine whether unconstrained speech contains signatures capable of identifying the acute effects of psilocybin microdoses. Methods Natural speech under psilocybin microdoses (0.5 g of psilocybin mushrooms) was acquired from thirty-four healthy adult volunteers (11 females: 32.09 +/- 3.53 years; 23 males: 30.87 +/- 4.64 years) following a double-blind and placebo-controlled experimental design with two measurement weeks per participant. On Wednesdays and Fridays of each week, participants consumed either the active dose (psilocybin) or the placebo (edible mushrooms). Features of interest were defined based on variables known to be affected by higher doses: verbosity, semantic variability, and sentiment scores. Machine learning models were used to discriminate between conditions. Classifiers were trained and tested using stratified cross-validation to compute the AUC and p-values. Results Except for semantic variability, these metrics presented significant differences between a typical active microdose and the inactive placebo condition. Machine learning classifiers were capable of distinguishing between conditions with high accuracy (AUC approximate to 0.8). Conclusions These results constitute first evidence that low doses of serotonergic psychedelics can be identified from unconstrained natural speech, with potential for widely applicable, affordable, and ecologically valid monitoring of microdosing schedules.
Název v anglickém jazyce
Natural language signatures of psilocybin microdosing
Popis výsledku anglicky
Rationale Serotonergic psychedelics are being studied as novel treatments for mental health disorders and as facilitators of improved well-being, mental function, and creativity. Recent studies have found mixed results concerning the effects of low doses of psychedelics ("microdosing") on these domains. However, microdosing is generally investigated using instruments designed to assess larger doses of psychedelics, which might lack sensitivity and specificity for this purpose. Objectives Determine whether unconstrained speech contains signatures capable of identifying the acute effects of psilocybin microdoses. Methods Natural speech under psilocybin microdoses (0.5 g of psilocybin mushrooms) was acquired from thirty-four healthy adult volunteers (11 females: 32.09 +/- 3.53 years; 23 males: 30.87 +/- 4.64 years) following a double-blind and placebo-controlled experimental design with two measurement weeks per participant. On Wednesdays and Fridays of each week, participants consumed either the active dose (psilocybin) or the placebo (edible mushrooms). Features of interest were defined based on variables known to be affected by higher doses: verbosity, semantic variability, and sentiment scores. Machine learning models were used to discriminate between conditions. Classifiers were trained and tested using stratified cross-validation to compute the AUC and p-values. Results Except for semantic variability, these metrics presented significant differences between a typical active microdose and the inactive placebo condition. Machine learning classifiers were capable of distinguishing between conditions with high accuracy (AUC approximate to 0.8). Conclusions These results constitute first evidence that low doses of serotonergic psychedelics can be identified from unconstrained natural speech, with potential for widely applicable, affordable, and ecologically valid monitoring of microdosing schedules.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
30104 - Pharmacology and pharmacy
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Psychopharmacology
ISSN
0033-3158
e-ISSN
—
Svazek periodika
239
Číslo periodika v rámci svazku
9
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
12
Strana od-do
2841-2852
Kód UT WoS článku
000807942300001
EID výsledku v databázi Scopus
2-s2.0-85131581931