Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Mixture Components Inference for Sparse Regression: Introduction and Application for Estimation of Neuronal Signal from fMRI BOLD

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00023752%3A_____%2F23%3A43921183" target="_blank" >RIV/00023752:_____/23:43921183 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/67985807:_____/23:00565994 RIV/00216208:11120/23:43924489

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0307904X22005753?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0307904X22005753?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.apm.2022.11.034" target="_blank" >10.1016/j.apm.2022.11.034</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Mixture Components Inference for Sparse Regression: Introduction and Application for Estimation of Neuronal Signal from fMRI BOLD

  • Popis výsledku v původním jazyce

    Sparse linear regression methods including the well-known LASSO and the Dantzig selector have become ubiquitous in the engineering practice, including in medical imaging. Among other tasks, they have been successfully applied for the estimation of neuronal activity from functional magnetic resonance data without prior knowledge of the stimulus or activation timing, utilizing an approximate knowledge of the hemodynamic response to local neuronal activity. These methods work by generating a parametric family of solutions with different sparsity, among which an ultimate choice is made using an information criteria. We propose a novel approach, that instead of selecting a single option from the family of regularized solutions, utilizes the whole family of such sparse regression solutions. Namely, their ensemble provides a first approximation of probability of activation at each time-point, and together with the conditional neuronal activity distributions estimated with the theory of mixtures with varying concentrations, they serve as the inputs to a Bayes classifier eventually deciding on the verity of activation at each time-point. We show in extensive numerical simulations that this new method performs favourably in comparison with standard approaches in a range of realistic scenarios. This is mainly due to the avoidance of overfitting and underfitting that commonly plague the solutions based on sparse regression combined with model selection methods, including the corrected Akaike Information Criterion. This advantage is finally documented in selected fMRI task datasets.

  • Název v anglickém jazyce

    Mixture Components Inference for Sparse Regression: Introduction and Application for Estimation of Neuronal Signal from fMRI BOLD

  • Popis výsledku anglicky

    Sparse linear regression methods including the well-known LASSO and the Dantzig selector have become ubiquitous in the engineering practice, including in medical imaging. Among other tasks, they have been successfully applied for the estimation of neuronal activity from functional magnetic resonance data without prior knowledge of the stimulus or activation timing, utilizing an approximate knowledge of the hemodynamic response to local neuronal activity. These methods work by generating a parametric family of solutions with different sparsity, among which an ultimate choice is made using an information criteria. We propose a novel approach, that instead of selecting a single option from the family of regularized solutions, utilizes the whole family of such sparse regression solutions. Namely, their ensemble provides a first approximation of probability of activation at each time-point, and together with the conditional neuronal activity distributions estimated with the theory of mixtures with varying concentrations, they serve as the inputs to a Bayes classifier eventually deciding on the verity of activation at each time-point. We show in extensive numerical simulations that this new method performs favourably in comparison with standard approaches in a range of realistic scenarios. This is mainly due to the avoidance of overfitting and underfitting that commonly plague the solutions based on sparse regression combined with model selection methods, including the corrected Akaike Information Criterion. This advantage is finally documented in selected fMRI task datasets.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    30103 - Neurosciences (including psychophysiology)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA21-32608S" target="_blank" >GA21-32608S: Charakterizace stavového repertoáru a dynamiky spontánní mozkové aktivity neurozobrazovacími metodami</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Applied Mathematical Modelling

  • ISSN

    0307-904X

  • e-ISSN

    1872-8480

  • Svazek periodika

    116

  • Číslo periodika v rámci svazku

    April

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    14

  • Strana od-do

    735-748

  • Kód UT WoS článku

    000906055100001

  • EID výsledku v databázi Scopus

    2-s2.0-85144473875