Reproducing Kernel Hilbert Space for the Exterior of an Ellipsoid and the Method of Successive Approximations in Solving GBVPs
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00025615%3A_____%2F13%3A%230001898" target="_blank" >RIV/00025615:_____/13:#0001898 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Reproducing Kernel Hilbert Space for the Exterior of an Ellipsoid and the Method of Successive Approximations in Solving GBVPs
Popis výsledku v původním jazyce
The discussion starts with a general review of iteration concepts as applied for solving BVPs in gravity field studies. The subsequent explanations rest on the weak formulation of the problems. This enables a natural transition to an interpretation of the solution in terms of function bases. However, the need for an integration over the complicated surface of the Earth and an oblique derivative in the boundary condition make the computation of the entries in Galerkin?s matrix extremely demanding. Therefore, an alternative is considered. For constructing Galerkin?s approximations a function basis is generated by the reproducing kernel of the Hilbert space of functions that are harmonic outside an ellipsoid. Obviously, the method of successive approximations is then applied to account for corrections due to the departure of the real boundary from the ellipsoid and due to the obliqueness of the derivative in the boundary condition. The explanations concerning the construction and computat
Název v anglickém jazyce
Reproducing Kernel Hilbert Space for the Exterior of an Ellipsoid and the Method of Successive Approximations in Solving GBVPs
Popis výsledku anglicky
The discussion starts with a general review of iteration concepts as applied for solving BVPs in gravity field studies. The subsequent explanations rest on the weak formulation of the problems. This enables a natural transition to an interpretation of the solution in terms of function bases. However, the need for an integration over the complicated surface of the Earth and an oblique derivative in the boundary condition make the computation of the entries in Galerkin?s matrix extremely demanding. Therefore, an alternative is considered. For constructing Galerkin?s approximations a function basis is generated by the reproducing kernel of the Hilbert space of functions that are harmonic outside an ellipsoid. Obviously, the method of successive approximations is then applied to account for corrections due to the departure of the real boundary from the ellipsoid and due to the obliqueness of the derivative in the boundary condition. The explanations concerning the construction and computat
Klasifikace
Druh
A - Audiovizuální tvorba
CEP obor
DE - Zemský magnetismus, geodesie, geografie
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/ED1.1.00%2F02.0090" target="_blank" >ED1.1.00/02.0090: NTIS - Nové technologie pro informační společnost</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
ISBN
—
Místo vydání
Rome
Název nakladatele resp. objednatele
International Association of Geodesy
Verze
—
Identifikační číslo nosiče
—