An OpenCL implementation of ellipsoidal harmonics
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00025615%3A_____%2F15%3A%230002188" target="_blank" >RIV/00025615:_____/15:#0002188 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/1345_2015_59" target="_blank" >http://dx.doi.org/10.1007/1345_2015_59</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/1345_2015_59" target="_blank" >10.1007/1345_2015_59</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
An OpenCL implementation of ellipsoidal harmonics
Popis výsledku v původním jazyce
The technology progress today makes it possible to treat most of the problems of physical geodesy by means of numerical arrangements hardly imaginable earlier. Nevertheless, considering an evaluation of spheroidal (spherical and ellipsoidal) harmonic functions in our typical tasks, we still observe a huge performance gap between our demands and capabilities of common CPUs. Methods used for calculating associated Legendre functions are mostly recursive and thus sequential. Therefore, it is challenging, but feasible, to arrange the processing of Legendre functions in a way that reduces memory utilisation and admits massive parallelism. Following this aim, we developed a streaming-parallel algorithm for computing oblate spheroidal harmonic functions and their derivatives. The algorithm is free of assumptions concerning the func-tion arguments, maximal degree/order or number of computation points and can be utilised on any data type, like a vector or scalar float, double or even integer numbers. Besides, it solves floating-point issues in the numerical treatment of Legendre functions. We demonstrate its Open Computing Language (OpenCL) implementation on a general-purpose graphics processing unit (GPGPU), which is ideal for its inexpensive computational power of some TFlops. Added performance benchmarks lead to the conclusion that our implementation on a single GPGPU device substantially outperforms recent multi-core CPUs, free of any precision penalty. Furthermore, thanks to the OpenCL standard, we can benefit from an excellent portability and scalability over heterogeneous parallel platforms. Let us note finally, that the topic presented is a matter of importance in many other application fields, not only in physical geodesy.
Název v anglickém jazyce
An OpenCL implementation of ellipsoidal harmonics
Popis výsledku anglicky
The technology progress today makes it possible to treat most of the problems of physical geodesy by means of numerical arrangements hardly imaginable earlier. Nevertheless, considering an evaluation of spheroidal (spherical and ellipsoidal) harmonic functions in our typical tasks, we still observe a huge performance gap between our demands and capabilities of common CPUs. Methods used for calculating associated Legendre functions are mostly recursive and thus sequential. Therefore, it is challenging, but feasible, to arrange the processing of Legendre functions in a way that reduces memory utilisation and admits massive parallelism. Following this aim, we developed a streaming-parallel algorithm for computing oblate spheroidal harmonic functions and their derivatives. The algorithm is free of assumptions concerning the func-tion arguments, maximal degree/order or number of computation points and can be utilised on any data type, like a vector or scalar float, double or even integer numbers. Besides, it solves floating-point issues in the numerical treatment of Legendre functions. We demonstrate its Open Computing Language (OpenCL) implementation on a general-purpose graphics processing unit (GPGPU), which is ideal for its inexpensive computational power of some TFlops. Added performance benchmarks lead to the conclusion that our implementation on a single GPGPU device substantially outperforms recent multi-core CPUs, free of any precision penalty. Furthermore, thanks to the OpenCL standard, we can benefit from an excellent portability and scalability over heterogeneous parallel platforms. Let us note finally, that the topic presented is a matter of importance in many other application fields, not only in physical geodesy.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
DE - Zemský magnetismus, geodesie, geografie
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
VIII Hotine-Marussi Symposium on Mathematical Geodesy
ISBN
978-3-319-24548-5
ISSN
0939-9585
e-ISSN
—
Počet stran výsledku
9
Strana od-do
—
Název nakladatele
Springer-Verlag
Místo vydání
Berlin
Místo konání akce
Rome
Datum konání akce
17. 6. 2013
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—