Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Small Modifications of Curvilinear Coordinates and Successive Approximations Applied in Geopotential Determination

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00025615%3A_____%2F16%3AN0000045" target="_blank" >RIV/00025615:_____/16:N0000045 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://agu.confex.com/agu/fm16/meetingapp.cgi/Paper/189936" target="_blank" >https://agu.confex.com/agu/fm16/meetingapp.cgi/Paper/189936</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Small Modifications of Curvilinear Coordinates and Successive Approximations Applied in Geopotential Determination

  • Popis výsledku v původním jazyce

    The mathematical apparatus currently applied for geopotential determination is undoubtedly quite developed. This concerns numerical methods as well as methods based on classical analysis, equally as classical and weak solution concepts. Nevertheless, the nature of the real surface of the Earth has its specific features and is still rather complex. The aim of this paper is to consider these limits and to seek a balance between the performance of an apparatus developed for the surface of the Earth smoothed (or simplified) up to a certain degree and an iteration procedure used to bridge the difference between the real and smoothed topography. The approach is applied for the solution of the linear gravimetric boundary value problem in geopotential determination. Similarly as in other branches of engineering and mathematical physics a transformation of coordinates is used that offers a possibility to solve an alternative between the boundary complexity and the complexity of the coefficients of the partial differential equation governing the solution. As examples the use of modified ellipsoidal coordinates for the transformation of the solution domain is discussed. However, the complexity of the boundary is then reflected in the structure of Laplace’s operator. This effect is taken into account by means of successive approximations. The structure of the respective iteration steps is derived and analyzed. On the level of individual iteration steps the attention is paid to the representation of the solution in terms of Green’s function method. The convergence of the procedure and the efficiency of its use for geopotential determination is discussed.

  • Název v anglickém jazyce

    Small Modifications of Curvilinear Coordinates and Successive Approximations Applied in Geopotential Determination

  • Popis výsledku anglicky

    The mathematical apparatus currently applied for geopotential determination is undoubtedly quite developed. This concerns numerical methods as well as methods based on classical analysis, equally as classical and weak solution concepts. Nevertheless, the nature of the real surface of the Earth has its specific features and is still rather complex. The aim of this paper is to consider these limits and to seek a balance between the performance of an apparatus developed for the surface of the Earth smoothed (or simplified) up to a certain degree and an iteration procedure used to bridge the difference between the real and smoothed topography. The approach is applied for the solution of the linear gravimetric boundary value problem in geopotential determination. Similarly as in other branches of engineering and mathematical physics a transformation of coordinates is used that offers a possibility to solve an alternative between the boundary complexity and the complexity of the coefficients of the partial differential equation governing the solution. As examples the use of modified ellipsoidal coordinates for the transformation of the solution domain is discussed. However, the complexity of the boundary is then reflected in the structure of Laplace’s operator. This effect is taken into account by means of successive approximations. The structure of the respective iteration steps is derived and analyzed. On the level of individual iteration steps the attention is paid to the representation of the solution in terms of Green’s function method. The convergence of the procedure and the efficiency of its use for geopotential determination is discussed.

Klasifikace

  • Druh

    A - Audiovizuální tvorba

  • CEP obor

    DE - Zemský magnetismus, geodesie, geografie

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • ISBN

  • Místo vydání

  • Název nakladatele resp. objednatele

  • Verze

  • Identifikační číslo nosiče