Using external tropospheric corrections to improve GNSS positioning of hot-air balloon
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00025615%3A_____%2F17%3AN0000007" target="_blank" >RIV/00025615:_____/17:N0000007 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s10291-017-0628-3" target="_blank" >https://link.springer.com/article/10.1007/s10291-017-0628-3</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10291-017-0628-3" target="_blank" >10.1007/s10291-017-0628-3</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Using external tropospheric corrections to improve GNSS positioning of hot-air balloon
Popis výsledku v původním jazyce
High accurate global navigation satellite systems (GNSS) require to correct a signal delay caused by the troposphere. The delay can be estimated along with other unknowns or introduced from external models. We assess the impact of the recently developed augmentation tropospheric model on real-time kinematic precise point positioning (PPP). The model is based on numerical weather forecast and thus reflects the actual state of weather conditions. Using the G-Nut/Geb software, we processed GNSS and meteorological data collected during the experiment using a hot-air balloon flying up to an altitude of 2000 m. We studied the impacts of random walk noise setting of zenith total delay (ZTD) on estimated parameters and the mutual correlations, the use of external tropospheric corrections, the use of data from a single or dual GNSS constellation and the use of Kalman filter and backward smoothing processing methods. We observed a significant negative correlation of the estimated rover height and ZTD which depends on constraining ZTD estimates. Such correlation caused a degraded performance of both parameters when estimated simultaneously, in particular for a single GNSS constellation. The impact of ZTD constraining reached up to 50-cm differences in the rover height. Introducing external tropospheric corrections improved the PPP solution regarding: (1) shortened convergence, (2) better overall robustness, particularly, in case of degraded satellite geometry, (3) less adjusted parameters with lower correlations. The numerical weather model-driven PPP resulted in 9-12- and 5-6-cm uncertainties in the rover altitude using the Kalman filter and the backward smoothing, respectively. Compared to standard PPP, it indicates better performance by a factor of 1-2 depending on the availability of GNSS constellations, the troposphere constraining and the processing strategy.
Název v anglickém jazyce
Using external tropospheric corrections to improve GNSS positioning of hot-air balloon
Popis výsledku anglicky
High accurate global navigation satellite systems (GNSS) require to correct a signal delay caused by the troposphere. The delay can be estimated along with other unknowns or introduced from external models. We assess the impact of the recently developed augmentation tropospheric model on real-time kinematic precise point positioning (PPP). The model is based on numerical weather forecast and thus reflects the actual state of weather conditions. Using the G-Nut/Geb software, we processed GNSS and meteorological data collected during the experiment using a hot-air balloon flying up to an altitude of 2000 m. We studied the impacts of random walk noise setting of zenith total delay (ZTD) on estimated parameters and the mutual correlations, the use of external tropospheric corrections, the use of data from a single or dual GNSS constellation and the use of Kalman filter and backward smoothing processing methods. We observed a significant negative correlation of the estimated rover height and ZTD which depends on constraining ZTD estimates. Such correlation caused a degraded performance of both parameters when estimated simultaneously, in particular for a single GNSS constellation. The impact of ZTD constraining reached up to 50-cm differences in the rover height. Introducing external tropospheric corrections improved the PPP solution regarding: (1) shortened convergence, (2) better overall robustness, particularly, in case of degraded satellite geometry, (3) less adjusted parameters with lower correlations. The numerical weather model-driven PPP resulted in 9-12- and 5-6-cm uncertainties in the rover altitude using the Kalman filter and the backward smoothing, respectively. Compared to standard PPP, it indicates better performance by a factor of 1-2 depending on the availability of GNSS constellations, the troposphere constraining and the processing strategy.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10511 - Environmental sciences (social aspects to be 5.7)
Návaznosti výsledku
Projekt
—
Návaznosti
N - Vyzkumna aktivita podporovana z neverejnych zdroju
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
GPS SOLUTIONS
ISSN
1080-5370
e-ISSN
1521-1886
Svazek periodika
21
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
11
Strana od-do
1479-1489
Kód UT WoS článku
000411901900006
EID výsledku v databázi Scopus
2-s2.0-85018488425