Evaluation of long-term BeiDou/GPS observation quality based on G-Nut/Anubis and initial results
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00025615%3A_____%2F18%3AN0000059" target="_blank" >RIV/00025615:_____/18:N0000059 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.irsm.cas.cz/index.php" target="_blank" >https://www.irsm.cas.cz/index.php</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.13168/AGG.2018.0006" target="_blank" >10.13168/AGG.2018.0006</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Evaluation of long-term BeiDou/GPS observation quality based on G-Nut/Anubis and initial results
Popis výsledku v původním jazyce
Reliable observations are the prerequisite for high-precision GNSS data processing. Data quality evaluation at the pre-processing procedure can help the user to identify the weakness of the observations. The open source software package G-Nut/Anubis developed at Geodetic Observatory Pecny (GOP) is introduced and used for the evaluation of long-term BeiDou/GPS signal. Several key indicators are selected to evaluate the BeiDou/GPS observations. Quantitative analysis shows that more than 100 stations can achieve 6-hour standalone BeiDou positioning at least. The completeness of the BeiDou phase and code observations at three frequencies is higher than that of the GPS observations in the selected station which is mainly attributed to the high elevation observations from GEO and IGSO satellites. Qualitative analysis shows that the multipath effects for pseudorange observations are correlated with signal, receiver types and firmware versions besides the station environment. Users attempting to improve the pseudorange observations by multipath filter should pay attention also to the receiver-specific settings. Cycle slip counts are used to indicate the quality of carrier-phase observations. Results show that BeiDou C05 satellite is more affected by the cycle slips, in particular the third frequency observables. The GPS third frequency obsevables are more robust compared to the legacy frequencies. Comprehensive single point positioning results show that positioning accuracy for BeiDou is worse than that of GPS, which is mainly caused by less active satellites, worse geometry and larger errors in the broadcast ephemeris. The BeiDou positioning accuracy was further degraded by the C13/C15 satellite and dominated by large clock errors. Broadcast evaluation shows that the BeiDou orbit errors are related to the constellations. Overall, the orbit precision for both GPS and BeiDou has been gradually improved. Outliers were observed for navigation records assigned with the healthy status, especially for BeiDou broadcast orbits.
Název v anglickém jazyce
Evaluation of long-term BeiDou/GPS observation quality based on G-Nut/Anubis and initial results
Popis výsledku anglicky
Reliable observations are the prerequisite for high-precision GNSS data processing. Data quality evaluation at the pre-processing procedure can help the user to identify the weakness of the observations. The open source software package G-Nut/Anubis developed at Geodetic Observatory Pecny (GOP) is introduced and used for the evaluation of long-term BeiDou/GPS signal. Several key indicators are selected to evaluate the BeiDou/GPS observations. Quantitative analysis shows that more than 100 stations can achieve 6-hour standalone BeiDou positioning at least. The completeness of the BeiDou phase and code observations at three frequencies is higher than that of the GPS observations in the selected station which is mainly attributed to the high elevation observations from GEO and IGSO satellites. Qualitative analysis shows that the multipath effects for pseudorange observations are correlated with signal, receiver types and firmware versions besides the station environment. Users attempting to improve the pseudorange observations by multipath filter should pay attention also to the receiver-specific settings. Cycle slip counts are used to indicate the quality of carrier-phase observations. Results show that BeiDou C05 satellite is more affected by the cycle slips, in particular the third frequency observables. The GPS third frequency obsevables are more robust compared to the legacy frequencies. Comprehensive single point positioning results show that positioning accuracy for BeiDou is worse than that of GPS, which is mainly caused by less active satellites, worse geometry and larger errors in the broadcast ephemeris. The BeiDou positioning accuracy was further degraded by the C13/C15 satellite and dominated by large clock errors. Broadcast evaluation shows that the BeiDou orbit errors are related to the constellations. Overall, the orbit precision for both GPS and BeiDou has been gradually improved. Outliers were observed for navigation records assigned with the healthy status, especially for BeiDou broadcast orbits.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10700 - Other natural sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/LO1506" target="_blank" >LO1506: Podpora udržitelnosti centra NTIS - Nové technologie pro informační společnost</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Acta Geodynynamica et Geomaterialia
ISSN
1214-9705
e-ISSN
2336-4351
Svazek periodika
15
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
9
Strana od-do
77-85
Kód UT WoS článku
000429493200009
EID výsledku v databázi Scopus
2-s2.0-85044593345