Advanced GNSS Processing Techniques (Working Group 1)
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00025615%3A_____%2F19%3AN0000061" target="_blank" >RIV/00025615:_____/19:N0000061 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/book/10.1007/978-3-030-13901-8" target="_blank" >https://link.springer.com/book/10.1007/978-3-030-13901-8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-13901-8_3" target="_blank" >10.1007/978-3-030-13901-8_3</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Advanced GNSS Processing Techniques (Working Group 1)
Popis výsledku v původním jazyce
Over the last decade, near real-time analysis of GPS data has become a well-established atmospheric observing tool, primarily coordinated by the EIG EUMETNET GPS Water Vapour Programme (E-GVAP) in Europe. In the near future, four operational GNSS will be available for commercial and scientific applications with atmospheric science benefiting from new signals from up to 60 satellites observed at any one place and time, however, many challenges remain regarding their optimal combined utilization. Besides raw data streaming, recent availability of precise real-time orbit and clock corrections enable wide utilization of autonomous Precise Point Positioning (PPP), which is particularly efficient for highrate, real-time and multi-GNSS analyses. New GNSS constellation signals, products and processing methods suggest the development of advanced GNSS tropospheric products, in support of weather numerical prediction and nowcasting will be substantially improved. Such examples are: ultra-fast and high-resolution tropospheric products available in real-time or on a sub-hourly basis, parameters monitoring tropospheric anisotropy above the station (such as horizontal gradients and tropospheric slant path delays), and indicators of severe weather such as extreme convection. Development of advanced GNSS tropospheric products within COST Action ES1206 benefited from two dedicated campaigns prepared for a collaborative effort: (1) the benchmark campaign and (2) the real-time demonstration campaign. The former served for estimating and assessing horizontal tropospheric gradients and tropospheric slant delays, estimated from GNSS, Water Vapour Radiometers and Numerical Weather Model (NWM) ray-tracing. The second campaign developed new software and strategies for realtime, multi-GNSS, high-rate tropospheric solutions including the assessment of pre-operational solutions. The impact of selected processing strategies and precise models were assessed during a long-term GNSS reprocessing campaign aimed at providing homogeneous tropospheric products for climate research. Using information from modern NWM forecasting systems, a variety of tropospheric correction models for real-time kinematic GNSS positioning were developed and assessed. Finally, a transfer of knowledge such as support for establishing new GNSS Analysis Centres and inclusion of new networks into E-GVAP were completed.
Název v anglickém jazyce
Advanced GNSS Processing Techniques (Working Group 1)
Popis výsledku anglicky
Over the last decade, near real-time analysis of GPS data has become a well-established atmospheric observing tool, primarily coordinated by the EIG EUMETNET GPS Water Vapour Programme (E-GVAP) in Europe. In the near future, four operational GNSS will be available for commercial and scientific applications with atmospheric science benefiting from new signals from up to 60 satellites observed at any one place and time, however, many challenges remain regarding their optimal combined utilization. Besides raw data streaming, recent availability of precise real-time orbit and clock corrections enable wide utilization of autonomous Precise Point Positioning (PPP), which is particularly efficient for highrate, real-time and multi-GNSS analyses. New GNSS constellation signals, products and processing methods suggest the development of advanced GNSS tropospheric products, in support of weather numerical prediction and nowcasting will be substantially improved. Such examples are: ultra-fast and high-resolution tropospheric products available in real-time or on a sub-hourly basis, parameters monitoring tropospheric anisotropy above the station (such as horizontal gradients and tropospheric slant path delays), and indicators of severe weather such as extreme convection. Development of advanced GNSS tropospheric products within COST Action ES1206 benefited from two dedicated campaigns prepared for a collaborative effort: (1) the benchmark campaign and (2) the real-time demonstration campaign. The former served for estimating and assessing horizontal tropospheric gradients and tropospheric slant delays, estimated from GNSS, Water Vapour Radiometers and Numerical Weather Model (NWM) ray-tracing. The second campaign developed new software and strategies for realtime, multi-GNSS, high-rate tropospheric solutions including the assessment of pre-operational solutions. The impact of selected processing strategies and precise models were assessed during a long-term GNSS reprocessing campaign aimed at providing homogeneous tropospheric products for climate research. Using information from modern NWM forecasting systems, a variety of tropospheric correction models for real-time kinematic GNSS positioning were developed and assessed. Finally, a transfer of knowledge such as support for establishing new GNSS Analysis Centres and inclusion of new networks into E-GVAP were completed.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10509 - Meteorology and atmospheric sciences
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Advanced Global Navigation Satellite Systems Tropospheric Products for Monitoring Severe Weather Events and Climate
ISBN
978-3-030-13900-1
ISSN
—
e-ISSN
—
Počet stran výsledku
188
Strana od-do
33-201
Název nakladatele
Springer Nature Switzerland AG
Místo vydání
Switzerland
Místo konání akce
Evropa
Datum konání akce
1. 1. 2013
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—