Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Laplacian structure, solution domain geometry and successive approximations in gravity field studies

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00025615%3A_____%2F20%3AN0000061" target="_blank" >RIV/00025615:_____/20:N0000061 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.5194/egusphere-egu2020-12839" target="_blank" >https://doi.org/10.5194/egusphere-egu2020-12839</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Laplacian structure, solution domain geometry and successive approximations in gravity field studies

  • Popis výsledku v původním jazyce

    When treating geodetic boundary value problems in gravity field studies, the geometry of the physical surface of the Earth may be seen in relation to the structure of the Laplace operator. Similarly as in other branches of engineering and mathematical physics a transformation of coordinates is used that offers a possibility to solve an alternative between the boundary complexity and the complexity of the coefficients of the partial differential equation governing the solution. The Laplace operator has a relatively simple structure in terms of spherical or ellipsoidal coordinates which are frequently used in geodesy. However, the physical surface of the Earth substantially differs from a sphere or an oblate ellipsoid of revolution, even if these are optimally fitted. The situation may be more convenient in a system of general curvilinear coordinates such that the physical surface of the Earth is imbedded in the family of coordinate surfaces. The structure of the Laplace operator, however, is more complicated in this case and in a sense it represents the topography of the physical surface of the Earth. The Green’s function method together with the method of successive approximations is used for the solution of geodetic boundary value problems expressed in terms of new coordinates. The structure of iteration steps is analyzed and if useful, it is modified by means of the integration by parts. Subsequently, the individual iteration steps are discussed and interpreted.

  • Název v anglickém jazyce

    Laplacian structure, solution domain geometry and successive approximations in gravity field studies

  • Popis výsledku anglicky

    When treating geodetic boundary value problems in gravity field studies, the geometry of the physical surface of the Earth may be seen in relation to the structure of the Laplace operator. Similarly as in other branches of engineering and mathematical physics a transformation of coordinates is used that offers a possibility to solve an alternative between the boundary complexity and the complexity of the coefficients of the partial differential equation governing the solution. The Laplace operator has a relatively simple structure in terms of spherical or ellipsoidal coordinates which are frequently used in geodesy. However, the physical surface of the Earth substantially differs from a sphere or an oblate ellipsoid of revolution, even if these are optimally fitted. The situation may be more convenient in a system of general curvilinear coordinates such that the physical surface of the Earth is imbedded in the family of coordinate surfaces. The structure of the Laplace operator, however, is more complicated in this case and in a sense it represents the topography of the physical surface of the Earth. The Green’s function method together with the method of successive approximations is used for the solution of geodetic boundary value problems expressed in terms of new coordinates. The structure of iteration steps is analyzed and if useful, it is modified by means of the integration by parts. Subsequently, the individual iteration steps are discussed and interpreted.

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

  • OECD FORD obor

    10102 - Applied mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LO1506" target="_blank" >LO1506: Podpora udržitelnosti centra NTIS - Nové technologie pro informační společnost</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů