Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

General curvilinear coordinates, Laplace’s operator with topography dependent coefficients and analysis of the iteration solution of the GBVP

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00025615%3A_____%2F22%3AN0000031" target="_blank" >RIV/00025615:_____/22:N0000031 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    General curvilinear coordinates, Laplace’s operator with topography dependent coefficients and analysis of the iteration solution of the GBVP

  • Popis výsledku v původním jazyce

    The structure of the Laplace operator is relatively simple when expressed in terms of spherical or ellipsoidal coordinates. The physical surface of the Earth, however, substantially differs from a sphere or an oblate ellipsoid of revolution, even if optimally fitted. The same holds true for the solution domain and the exterior of a sphere or of an oblate ellipsoid of revolution. The situation is more convenient in a system of general curvilinear coordinates such that the physical surface of the Earth (smoothed to a certain degree) is imbedded in the family of coordinate surfaces. Therefore, a transformation of coordinates is applied in treating the geodetic boundary value problem. The transformation contains also an attenuation function. Subsequently, tensor calculus is used and the Laplace operator is expressed in the new coordinates. Its structure becomes more complicated now. Nevertheless, in a sense it represents the topography of the physical surface of the Earth. For this reason the Green’s function method is used together with the method of successive approximations in the solution of the geodetic boundary value problem expressed in terms of the new coordinates. The structure of iteration steps is analyzed and if possible, it is modified by means of integration by parts. The iteration steps and their convergence are discussed and interpreted, numerically as well as in terms of functional analysis. The approach is also compared with the method of analytical continuation.

  • Název v anglickém jazyce

    General curvilinear coordinates, Laplace’s operator with topography dependent coefficients and analysis of the iteration solution of the GBVP

  • Popis výsledku anglicky

    The structure of the Laplace operator is relatively simple when expressed in terms of spherical or ellipsoidal coordinates. The physical surface of the Earth, however, substantially differs from a sphere or an oblate ellipsoid of revolution, even if optimally fitted. The same holds true for the solution domain and the exterior of a sphere or of an oblate ellipsoid of revolution. The situation is more convenient in a system of general curvilinear coordinates such that the physical surface of the Earth (smoothed to a certain degree) is imbedded in the family of coordinate surfaces. Therefore, a transformation of coordinates is applied in treating the geodetic boundary value problem. The transformation contains also an attenuation function. Subsequently, tensor calculus is used and the Laplace operator is expressed in the new coordinates. Its structure becomes more complicated now. Nevertheless, in a sense it represents the topography of the physical surface of the Earth. For this reason the Green’s function method is used together with the method of successive approximations in the solution of the geodetic boundary value problem expressed in terms of the new coordinates. The structure of iteration steps is analyzed and if possible, it is modified by means of integration by parts. The iteration steps and their convergence are discussed and interpreted, numerically as well as in terms of functional analysis. The approach is also compared with the method of analytical continuation.

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

  • OECD FORD obor

    10102 - Applied mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů