LARES-2 contribution to global geodetic parameters from the combined LAGEOS-LARES solutions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00025615%3A_____%2F24%3AN0000020" target="_blank" >RIV/00025615:_____/24:N0000020 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s00190-024-01925-3" target="_blank" >https://link.springer.com/article/10.1007/s00190-024-01925-3</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00190-024-01925-3" target="_blank" >10.1007/s00190-024-01925-3</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
LARES-2 contribution to global geodetic parameters from the combined LAGEOS-LARES solutions
Popis výsledku v původním jazyce
LARES-2 is a new geodetic satellite designed for high-accuracy satellite laser ranging. The orbit altitude of LARES-2 is similar to that of LAGEOS-1, whereas the inclination angle of 70° complements the LAGEOS-1 inclination of 110°; hence, both satellites form the butterfly configuration for the verification of the Lense–Thirring effect. Although the major objective of LARES-2 is testing general relativity, LARES-2 substantially contributes to geodesy in terms of the realization of terrestrial reference frames, recovery of the geocenter motion, pole coordinates, length-of-day, and low-degree gravity field coefficients. We analyze the first 1.5 years of LARES-2 data and test different empirical orbit models for LARES-2 with and without co-estimating low-degree gravity field coefficients to find the best combination strategy with LAGEOS satellites. We found that LARES-2 orbit determination is more accurate than that of LAGEOS-1/2 due to a different satellite construction consisting of a solid sphere with no inner structure. Neither the correction for D0 nor the empirical once-per-revolution along-track accelerations SC/SS have to be estimated for LARES-2 when co-estimating gravity field coefficients. The only empirical parameter needed for LARES-2 is the constant along-track acceleration S0 to compensate for the Yarkovsky–Schach effect. On the contrary, for LAGEOS-1/2, the non-gravitational perturbations affect C30 and Z geocenter estimates when once-per-revolution parameters are not estimated. LARES-2 does not face this issue. LARES-2 improves the formal errors of the Z geocenter component by up to 59% and C20 by up to 40% compared to the combined LAGEOS-1/2 solutions and provides C30 estimates unaffected by thermal orbit modeling issues.
Název v anglickém jazyce
LARES-2 contribution to global geodetic parameters from the combined LAGEOS-LARES solutions
Popis výsledku anglicky
LARES-2 is a new geodetic satellite designed for high-accuracy satellite laser ranging. The orbit altitude of LARES-2 is similar to that of LAGEOS-1, whereas the inclination angle of 70° complements the LAGEOS-1 inclination of 110°; hence, both satellites form the butterfly configuration for the verification of the Lense–Thirring effect. Although the major objective of LARES-2 is testing general relativity, LARES-2 substantially contributes to geodesy in terms of the realization of terrestrial reference frames, recovery of the geocenter motion, pole coordinates, length-of-day, and low-degree gravity field coefficients. We analyze the first 1.5 years of LARES-2 data and test different empirical orbit models for LARES-2 with and without co-estimating low-degree gravity field coefficients to find the best combination strategy with LAGEOS satellites. We found that LARES-2 orbit determination is more accurate than that of LAGEOS-1/2 due to a different satellite construction consisting of a solid sphere with no inner structure. Neither the correction for D0 nor the empirical once-per-revolution along-track accelerations SC/SS have to be estimated for LARES-2 when co-estimating gravity field coefficients. The only empirical parameter needed for LARES-2 is the constant along-track acceleration S0 to compensate for the Yarkovsky–Schach effect. On the contrary, for LAGEOS-1/2, the non-gravitational perturbations affect C30 and Z geocenter estimates when once-per-revolution parameters are not estimated. LARES-2 does not face this issue. LARES-2 improves the formal errors of the Z geocenter component by up to 59% and C20 by up to 40% compared to the combined LAGEOS-1/2 solutions and provides C30 estimates unaffected by thermal orbit modeling issues.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10500 - Earth and related environmental sciences
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Geodesy
ISSN
0949-7714
e-ISSN
1432-1394
Svazek periodika
99
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
17
Strana od-do
—
Kód UT WoS článku
001376075200001
EID výsledku v databázi Scopus
2-s2.0-85211951198