Lead fluxes and 206Pb/207Pb isotope ratios in rime and snow collected at remote mountain-top locations (Czech Republic, Central Europe): Patterns and sources
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00025798%3A_____%2F16%3A00000260" target="_blank" >RIV/00025798:_____/16:00000260 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11320/16:10328914
Výsledek na webu
<a href="http://www.sciencedirect.com/science/article/pii/S135223101630591X" target="_blank" >http://www.sciencedirect.com/science/article/pii/S135223101630591X</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.atmosenv.2016.07.057" target="_blank" >10.1016/j.atmosenv.2016.07.057</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Lead fluxes and 206Pb/207Pb isotope ratios in rime and snow collected at remote mountain-top locations (Czech Republic, Central Europe): Patterns and sources
Popis výsledku v původním jazyce
During three winter seasons (2009-2011), Pb concentrations were measured in precipitation at 10 highelevation sites in the Czech Republic, close to the borders with Austria, Germany, Poland, and Slovakia. Soluble and insoluble Pb forms were quantified in snow (vertical deposition), and rime (horizontal deposition). The objective was to compare Pb input fluxes into ecosystems via vertical and horizontal deposition, and to identify the residual Pb pollution sources in an era of rapidly decreasing industrial pollution. Lead soluble in diluted HNO3 made up 96% of total Pb deposition, with the remaining 4% Pb bound mainly in silicates. Three times higher concentrations of soluble Pb in rime than in snow, and 2.5 times higher concentrations of insoluble Pb in rime than in snow were associated with slightly different Pb isotope ratios. On average, the 206Pb/207Pb ratios in rime were higher than those in snow. Higher mean 206Pb/207Pb ratios of insoluble Pb (1.175) than in soluble Pb (1.165) may indicate an increasing role of geogenic Pb in recent atmospheric deposition. A distinct reversal to more radiogenic 206Pb/207Pb ratios in snow and rime in 2010, compared to literature data from rain-fed Sphagnum peatlands (1800-2000 A.D.), documented a recent decrease in anthropogenic Pb in the atmosphere of Central Europe. Since the early 1980s, Pb concentrations in snow decreased 18 times in the rural south of the Czech Republic, but only twice in the industrial north of the Czech Republic. Isotope signatures indicated that Pb in today's atmospheric deposition is mainly derived from Mesozoic ores mined/processed in Poland and coal combustion in the Czech Republic and Poland.
Název v anglickém jazyce
Lead fluxes and 206Pb/207Pb isotope ratios in rime and snow collected at remote mountain-top locations (Czech Republic, Central Europe): Patterns and sources
Popis výsledku anglicky
During three winter seasons (2009-2011), Pb concentrations were measured in precipitation at 10 highelevation sites in the Czech Republic, close to the borders with Austria, Germany, Poland, and Slovakia. Soluble and insoluble Pb forms were quantified in snow (vertical deposition), and rime (horizontal deposition). The objective was to compare Pb input fluxes into ecosystems via vertical and horizontal deposition, and to identify the residual Pb pollution sources in an era of rapidly decreasing industrial pollution. Lead soluble in diluted HNO3 made up 96% of total Pb deposition, with the remaining 4% Pb bound mainly in silicates. Three times higher concentrations of soluble Pb in rime than in snow, and 2.5 times higher concentrations of insoluble Pb in rime than in snow were associated with slightly different Pb isotope ratios. On average, the 206Pb/207Pb ratios in rime were higher than those in snow. Higher mean 206Pb/207Pb ratios of insoluble Pb (1.175) than in soluble Pb (1.165) may indicate an increasing role of geogenic Pb in recent atmospheric deposition. A distinct reversal to more radiogenic 206Pb/207Pb ratios in snow and rime in 2010, compared to literature data from rain-fed Sphagnum peatlands (1800-2000 A.D.), documented a recent decrease in anthropogenic Pb in the atmosphere of Central Europe. Since the early 1980s, Pb concentrations in snow decreased 18 times in the rural south of the Czech Republic, but only twice in the industrial north of the Czech Republic. Isotope signatures indicated that Pb in today's atmospheric deposition is mainly derived from Mesozoic ores mined/processed in Poland and coal combustion in the Czech Republic and Poland.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
DD - Geochemie
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Atmospheric Environment
ISSN
1352-2310
e-ISSN
—
Svazek periodika
143
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
9
Strana od-do
51-59
Kód UT WoS článku
000373863900026
EID výsledku v databázi Scopus
—