Computational study of deformation mechanisms and grain size evolution in granulites – Implications for the rheology of the lower crust
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00025798%3A_____%2F17%3A00000072" target="_blank" >RIV/00025798:_____/17:00000072 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11310/17:10363693
Výsledek na webu
<a href="http://www.sciencedirect.com/science/article/pii/S0012821X17301401" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0012821X17301401</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.epsl.2017.03.010" target="_blank" >10.1016/j.epsl.2017.03.010</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Computational study of deformation mechanisms and grain size evolution in granulites – Implications for the rheology of the lower crust
Popis výsledku v původním jazyce
Recrystallization of original coarse-grained ternary feldspar in the Bohemian Massif led to formation of a fine-grained (∼100μm) mixed matrix dominated by plagioclase and K-feldspar. This change occurred at temperatures of ∼850◦C and was probably caused by chemically induced decomposition related to slight cooling and enhanced by deformation during continental collision. The resulting microstructure shows indications of diffusion creep assisted by melt-enhanced grain-boundary sliding. Further on, minor coarsening occurred associated with deformation by dislocation creep and aggregation of mineral phases. Using a thermodynamics-based model of grain size evolution we show that stability of the fine-grained microstructure crucially depends on Zener pinning in the two-phase mineral matrix. Pinning efficiently hinders grain growth, and the small grain size that resulted from the ternary feldspar decomposition can be stable even at high temperatures. The late switch from the grain-size-sensitive creep to dislocation creep is rather difficult to explain by temperature and strain rate (or stress) changes only. However, a simple incorporation of melt solidification can successfully simulate this behavior. Alternatively, the switch and the associated grain size growth can be related to mineral phase aggregation at lower pressure–temperature conditions resulting into a decrease of pinning efficiency. This study suggests that the fine grain size of the Bohemian granulites, in contrast to the common coarse-grained type, stems from abrupt recrystallization during the high-pressure high-temperature conditions, and pinning in the fine-grained matrix. Such a process may in some cases significantly and suddenly reduce the strength of the lower continental crust and allow for its efficient redistribution.
Název v anglickém jazyce
Computational study of deformation mechanisms and grain size evolution in granulites – Implications for the rheology of the lower crust
Popis výsledku anglicky
Recrystallization of original coarse-grained ternary feldspar in the Bohemian Massif led to formation of a fine-grained (∼100μm) mixed matrix dominated by plagioclase and K-feldspar. This change occurred at temperatures of ∼850◦C and was probably caused by chemically induced decomposition related to slight cooling and enhanced by deformation during continental collision. The resulting microstructure shows indications of diffusion creep assisted by melt-enhanced grain-boundary sliding. Further on, minor coarsening occurred associated with deformation by dislocation creep and aggregation of mineral phases. Using a thermodynamics-based model of grain size evolution we show that stability of the fine-grained microstructure crucially depends on Zener pinning in the two-phase mineral matrix. Pinning efficiently hinders grain growth, and the small grain size that resulted from the ternary feldspar decomposition can be stable even at high temperatures. The late switch from the grain-size-sensitive creep to dislocation creep is rather difficult to explain by temperature and strain rate (or stress) changes only. However, a simple incorporation of melt solidification can successfully simulate this behavior. Alternatively, the switch and the associated grain size growth can be related to mineral phase aggregation at lower pressure–temperature conditions resulting into a decrease of pinning efficiency. This study suggests that the fine grain size of the Bohemian granulites, in contrast to the common coarse-grained type, stems from abrupt recrystallization during the high-pressure high-temperature conditions, and pinning in the fine-grained matrix. Such a process may in some cases significantly and suddenly reduce the strength of the lower continental crust and allow for its efficient redistribution.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10505 - Geology
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Earth and Planetary Science Letters
ISSN
0012-821X
e-ISSN
—
Svazek periodika
466
Číslo periodika v rámci svazku
March
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
12
Strana od-do
91–102
Kód UT WoS článku
000400225800010
EID výsledku v databázi Scopus
2-s2.0-85015873962