Solid solutions in the system acanthite (Ag2S)–naumannite (Ag2Se) and the relationships between Ag-sulfoselenides and Se-bearing polybasite from the Kongsberg silver district, Norway, with implications for sulfur–selenium fractionation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00025798%3A_____%2F18%3A00000101" target="_blank" >RIV/00025798:_____/18:00000101 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s00410-018-1500-3" target="_blank" >https://link.springer.com/article/10.1007/s00410-018-1500-3</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00410-018-1500-3" target="_blank" >10.1007/s00410-018-1500-3</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Solid solutions in the system acanthite (Ag2S)–naumannite (Ag2Se) and the relationships between Ag-sulfoselenides and Se-bearing polybasite from the Kongsberg silver district, Norway, with implications for sulfur–selenium fractionation
Popis výsledku v původním jazyce
Sulfoselenides [Ag2(S,Se)] and Se-bearing polybasite have been discovered at the Kongsberg silver district. The selenium bearingminerals occur in two samples from the northern part of the district, forming either single or polyphase inclusions together with chalcopyrite within native silver. The Ag-sulfoselenides show large chemical variations, covering nearly the complete compositional range between acanthite (Ag2S) and naumannite (Ag2Se). For the data presented here, there is no local maximum at the composition Ag4SSe attributed to the distinct phase called aguilarite, suggesting that this compositioncan be considered as one of many possible along the monoclinic Ag2S–Ag2S0.4Se0.6 solid solution series rather than a specific mineral phase. We present a model explaining the variations in the Se-content of Ag2(S,Se) as a result of gradual de-sulfidization of the rock under oxidizing conditions. During this process, sulfur from the Ag2S-component of Ag2(S,Se)oxidized and dissolved in the fluid phase as SO42−, resulting in the formation of native silver. The activity ratio aS2−∕aSe2− of the system gradually decreased due to the removal of SO42−, which resulted in the stabilization of a sulfoselenide with higher selenium content. As a result of reaction progress, grains of Ag2(S,Se) became gradually enclosed in newly formed native silver, and therefore isolated from further reactions with the grain-boundary fluid. Grains isolated early during theprocess show low content of Se reflecting high a S2−∕aSe2− of the equilibrium fluid, while grains showing high Se reflect the composition of late low a S2−∕aSe2− fluids. Analyses of Se-bearing polybasite show that selenium is preferentially partitioned into Ag2(S,Se) compared to polybasite. The model presented here demonstrates how oxidation of sulfoselenides leads to fractionation of sulfur and selenium.
Název v anglickém jazyce
Solid solutions in the system acanthite (Ag2S)–naumannite (Ag2Se) and the relationships between Ag-sulfoselenides and Se-bearing polybasite from the Kongsberg silver district, Norway, with implications for sulfur–selenium fractionation
Popis výsledku anglicky
Sulfoselenides [Ag2(S,Se)] and Se-bearing polybasite have been discovered at the Kongsberg silver district. The selenium bearingminerals occur in two samples from the northern part of the district, forming either single or polyphase inclusions together with chalcopyrite within native silver. The Ag-sulfoselenides show large chemical variations, covering nearly the complete compositional range between acanthite (Ag2S) and naumannite (Ag2Se). For the data presented here, there is no local maximum at the composition Ag4SSe attributed to the distinct phase called aguilarite, suggesting that this compositioncan be considered as one of many possible along the monoclinic Ag2S–Ag2S0.4Se0.6 solid solution series rather than a specific mineral phase. We present a model explaining the variations in the Se-content of Ag2(S,Se) as a result of gradual de-sulfidization of the rock under oxidizing conditions. During this process, sulfur from the Ag2S-component of Ag2(S,Se)oxidized and dissolved in the fluid phase as SO42−, resulting in the formation of native silver. The activity ratio aS2−∕aSe2− of the system gradually decreased due to the removal of SO42−, which resulted in the stabilization of a sulfoselenide with higher selenium content. As a result of reaction progress, grains of Ag2(S,Se) became gradually enclosed in newly formed native silver, and therefore isolated from further reactions with the grain-boundary fluid. Grains isolated early during theprocess show low content of Se reflecting high a S2−∕aSe2− of the equilibrium fluid, while grains showing high Se reflect the composition of late low a S2−∕aSe2− fluids. Analyses of Se-bearing polybasite show that selenium is preferentially partitioned into Ag2(S,Se) compared to polybasite. The model presented here demonstrates how oxidation of sulfoselenides leads to fractionation of sulfur and selenium.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10504 - Mineralogy
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Contributions to Mineralogy and Petrology
ISSN
0010-7999
e-ISSN
—
Svazek periodika
173
Číslo periodika v rámci svazku
9: 71
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
17
Strana od-do
nestránkováno
Kód UT WoS článku
000441396900003
EID výsledku v databázi Scopus
2-s2.0-85051662864