Thermal Alteration of Labile Elements in Carbonaceous Chondrites
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00025798%3A_____%2F19%3A00000010" target="_blank" >RIV/00025798:_____/19:00000010 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0019103518303427" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0019103518303427</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.icarus.2018.12.022" target="_blank" >10.1016/j.icarus.2018.12.022</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Thermal Alteration of Labile Elements in Carbonaceous Chondrites
Popis výsledku v původním jazyce
Carbonaceous chondrite meteorites are some of the oldest Solar System planetary materials available for study. The CI group has bulk abundances of elements similar to those of the solar photosphere. Of particular interest in carbonaceous chondrite compositions are labile elements, which vaporize and mobilize efficiently during post accretionary parent-body heating events. Thus, they can record low-temperature alteration events throughout asteroid evolution. However, the precise nature of labile-element mobilization in planetary materials is unknown. Here we characterize the thermally induced movements of the labile elements S, As, Se, Te, Cd, Sb, and Hg in carbonaceous chondrites by conducting experimental simulations of volatile-element mobilization during thermal metamorphism. This process results in appreciable loss of some elements at temperatures as low as 500 K. This work builds on previous laboratory heating experiments on primitive meteorites and shows the sensitivity of chondrite compositions to excursions in temperature. Elements such as S and Hg have the most active response to temperature across different meteorite groups. Labile element mobilization in primitive meteorites is essential for quantifying elemental fractionation that occurred on asteroids early in Solar System history. This work is relevant to maintaining a pristine sample from asteroid (101955) Bennu from the OSIRIS-REx mission and constraining the past orbital history of Bennu. Additionally, we discuss thermal effects on surface processes of near-Earth asteroids, including the thermal history of 'rock comets' such as (3200) Phaethon. This work is also critical for constraining the concentrations of contaminants in vaporized water extracted from asteroid regolith as part of future in situ resource utilization for sustained robotic and human space exploration.
Název v anglickém jazyce
Thermal Alteration of Labile Elements in Carbonaceous Chondrites
Popis výsledku anglicky
Carbonaceous chondrite meteorites are some of the oldest Solar System planetary materials available for study. The CI group has bulk abundances of elements similar to those of the solar photosphere. Of particular interest in carbonaceous chondrite compositions are labile elements, which vaporize and mobilize efficiently during post accretionary parent-body heating events. Thus, they can record low-temperature alteration events throughout asteroid evolution. However, the precise nature of labile-element mobilization in planetary materials is unknown. Here we characterize the thermally induced movements of the labile elements S, As, Se, Te, Cd, Sb, and Hg in carbonaceous chondrites by conducting experimental simulations of volatile-element mobilization during thermal metamorphism. This process results in appreciable loss of some elements at temperatures as low as 500 K. This work builds on previous laboratory heating experiments on primitive meteorites and shows the sensitivity of chondrite compositions to excursions in temperature. Elements such as S and Hg have the most active response to temperature across different meteorite groups. Labile element mobilization in primitive meteorites is essential for quantifying elemental fractionation that occurred on asteroids early in Solar System history. This work is relevant to maintaining a pristine sample from asteroid (101955) Bennu from the OSIRIS-REx mission and constraining the past orbital history of Bennu. Additionally, we discuss thermal effects on surface processes of near-Earth asteroids, including the thermal history of 'rock comets' such as (3200) Phaethon. This work is also critical for constraining the concentrations of contaminants in vaporized water extracted from asteroid regolith as part of future in situ resource utilization for sustained robotic and human space exploration.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10505 - Geology
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-15498S" target="_blank" >GA18-15498S: Izotopové hmotové bilance vápníku a hořčíku v acidifikovaných malých povodích na horninovém podloží s kontrastním chemickým složením</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Icarus. International Journal Of Solar System Studies
ISSN
0019-1035
e-ISSN
—
Svazek periodika
324
Číslo periodika v rámci svazku
May
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
16
Strana od-do
104-119
Kód UT WoS článku
000466057500007
EID výsledku v databázi Scopus
2-s2.0-85062046744