Two-pyroxene syenitoids from the Moldanubian Zone of the Bohemian Massif: peculiar magmas derived from a strongly enriched lithospheric mantle source
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00025798%3A_____%2F19%3A00000064" target="_blank" >RIV/00025798:_____/19:00000064 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216224:14310/19:00113464 RIV/00216208:11310/19:10404568
Výsledek na webu
<a href="https://doi.org/10.1016/j.lithos.2019.05.028" target="_blank" >https://doi.org/10.1016/j.lithos.2019.05.028</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.lithos.2019.05.028" target="_blank" >10.1016/j.lithos.2019.05.028</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Two-pyroxene syenitoids from the Moldanubian Zone of the Bohemian Massif: peculiar magmas derived from a strongly enriched lithospheric mantle source
Popis výsledku v původním jazyce
In the Variscan Bohemian Massif, (ultra-)potassic plutons are conspicuously associated with the high-grade, lower crustal/upper mantle Gföhl Unit (Moldanubian Zone). They can be subdivided into two contrasting groups: (1) coarse amphibole–biotite melagranite to quartz syenite with conspicuous K-feldspar phenocrysts (the 'durbachite suite'), and (2) essentially equigranular biotite–two-pyroxene quartz syenites to melagranites (the 'syenitoid suite').The latter suite, represented by the Tábor and Jihlava plutons, is characterized by an originally 'drier' mineral assemblage orthopyroxene + clinopyroxene + Mg-biotite + plagioclase + K-feldspar + quartz, with accessory zircon, apatite, ilmenite, monazite and/or rutile ± chromite. The rich assemblage of both rock-forming and accessory minerals allows testing of numerous geothermobarometers. The resulting P–T data are mutually consistent; they document emplacement of the parental magmas at mid-crustal levels (~5 kbar/19 km for Tábor and 7–8 kbar/26–30 km for Jihlava) and record near-isobaric crystallization from at least 1170 °C to the solidus.New Isotope-Dilution Thermal Ionization Mass-Spectrometry (ID-TIMS) U–Pb ages for zircon (336.9 ± 0.6 Ma) and rutile (336.8 ± 0.8 Ma) from the Tábor Pluton, together with previously published ages from the Jihlava Pluton, provide temporal constraints for the emplacement and rapid cooling of the syenitoids below c. 600 °C. This supports the hypothesis of post-tectonic emplacement of a hot and dry melt (>1200 °C?) into an essentially consolidated orogenic crust.The two syenitoid plutons have comparable, crust-like radiogenic isotope signatures (87Sr/86Sr337 = 0.7114–0.7133, ?337Nd = -6.8 to -8.0). This, in context of whole-rock geochemical variation and K-feldspar Pb isotopic compositions, is consistent with generation from a strongly enriched lithospheric mantle source. Shortly before melting, the local orogenic mantle was most likely modified by deep subduction and relamination of felsic crustal material of the Saxothuringian provenance, transformed to the felsic high-pressure granulites common in the Moldanubian Zone. In the subsequent evolution of the two-pyroxene syenitoid plutons, crystal fractionation and accumulation played a key role, unlike in the durbachite suite itself, where magma mixing with leucogranitic melts was much more important.Structural relations inside and around the (ultra-)potassic plutons (~343–335 Ma) suggest that – besides different depths and specific processes of magma emplacement – these plutons track different kinematic histories and evolutions of regional strain fields in their high-grade country rocks in this crucial period of the Variscan Orogeny.
Název v anglickém jazyce
Two-pyroxene syenitoids from the Moldanubian Zone of the Bohemian Massif: peculiar magmas derived from a strongly enriched lithospheric mantle source
Popis výsledku anglicky
In the Variscan Bohemian Massif, (ultra-)potassic plutons are conspicuously associated with the high-grade, lower crustal/upper mantle Gföhl Unit (Moldanubian Zone). They can be subdivided into two contrasting groups: (1) coarse amphibole–biotite melagranite to quartz syenite with conspicuous K-feldspar phenocrysts (the 'durbachite suite'), and (2) essentially equigranular biotite–two-pyroxene quartz syenites to melagranites (the 'syenitoid suite').The latter suite, represented by the Tábor and Jihlava plutons, is characterized by an originally 'drier' mineral assemblage orthopyroxene + clinopyroxene + Mg-biotite + plagioclase + K-feldspar + quartz, with accessory zircon, apatite, ilmenite, monazite and/or rutile ± chromite. The rich assemblage of both rock-forming and accessory minerals allows testing of numerous geothermobarometers. The resulting P–T data are mutually consistent; they document emplacement of the parental magmas at mid-crustal levels (~5 kbar/19 km for Tábor and 7–8 kbar/26–30 km for Jihlava) and record near-isobaric crystallization from at least 1170 °C to the solidus.New Isotope-Dilution Thermal Ionization Mass-Spectrometry (ID-TIMS) U–Pb ages for zircon (336.9 ± 0.6 Ma) and rutile (336.8 ± 0.8 Ma) from the Tábor Pluton, together with previously published ages from the Jihlava Pluton, provide temporal constraints for the emplacement and rapid cooling of the syenitoids below c. 600 °C. This supports the hypothesis of post-tectonic emplacement of a hot and dry melt (>1200 °C?) into an essentially consolidated orogenic crust.The two syenitoid plutons have comparable, crust-like radiogenic isotope signatures (87Sr/86Sr337 = 0.7114–0.7133, ?337Nd = -6.8 to -8.0). This, in context of whole-rock geochemical variation and K-feldspar Pb isotopic compositions, is consistent with generation from a strongly enriched lithospheric mantle source. Shortly before melting, the local orogenic mantle was most likely modified by deep subduction and relamination of felsic crustal material of the Saxothuringian provenance, transformed to the felsic high-pressure granulites common in the Moldanubian Zone. In the subsequent evolution of the two-pyroxene syenitoid plutons, crystal fractionation and accumulation played a key role, unlike in the durbachite suite itself, where magma mixing with leucogranitic melts was much more important.Structural relations inside and around the (ultra-)potassic plutons (~343–335 Ma) suggest that – besides different depths and specific processes of magma emplacement – these plutons track different kinematic histories and evolutions of regional strain fields in their high-grade country rocks in this crucial period of the Variscan Orogeny.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10505 - Geology
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-24378S" target="_blank" >GA18-24378S: Petrogeneze (ultra-)draselných magmat evropských Variscid – implikace pro vývoj kolizních orogenů a modely krustálního růstu</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Lithos
ISSN
0024-4937
e-ISSN
—
Svazek periodika
342-343
Číslo periodika v rámci svazku
October
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
24
Strana od-do
239-262
Kód UT WoS článku
000477091500015
EID výsledku v databázi Scopus
2-s2.0-85067007627