Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Fast And Easy Mineral Classification Using CASI/SASI/TASI

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00025798%3A_____%2F19%3A00000121" target="_blank" >RIV/00025798:_____/19:00000121 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://is.earsel.org/workshop/11-IS-Brno2019/" target="_blank" >http://is.earsel.org/workshop/11-IS-Brno2019/</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Fast And Easy Mineral Classification Using CASI/SASI/TASI

  • Popis výsledku v původním jazyce

    The poster was presented at the 11th EARSeL SIG IS Workshop in Brno.Abstract: Independent spectral analysis is usually employed to analyse hyperspectral optical (visible: VIS, near infrared: NIR, shortwave infrared: SWIR) and thermal (longwave infrared: LWIR) data. The integration of the spectral information provided by different wavelength ranges and the subsequent complex classification still remains challenging. In this paper we demonstrate the benefits of mineral classification employed to optical and thermal hyperspectral data (CASI and SASI: 0.4-2.5 micrometer; TASI: 8.6-11.5 micrometer) when using new tools (QUANTools) developed at the Czech Geological Survey (CGS). The concept is based on the automatic detection of multiple absorption features; moreover it allows quick data processing and classification without requiring endmember definition prior to spectral mapping. As a result 12 mineral classes were identified integrating together the spectral information from CASI, SASI and TASI imaging data. A representative sample for each mapped class was collected and, consequently, semi-quantitative XRD diffraction analysis was conducted to resolve the mineralogy in further detail. We can conclude that the new concept allows for quick integration and classification of the VIS/NIR, SWIR and LWIR hyperspectral data. The approach can increase time/cost efficiency as the validation samples can be collected after image classification targeting specifically the identified surface variability (e.g., mapped classes).

  • Název v anglickém jazyce

    Fast And Easy Mineral Classification Using CASI/SASI/TASI

  • Popis výsledku anglicky

    The poster was presented at the 11th EARSeL SIG IS Workshop in Brno.Abstract: Independent spectral analysis is usually employed to analyse hyperspectral optical (visible: VIS, near infrared: NIR, shortwave infrared: SWIR) and thermal (longwave infrared: LWIR) data. The integration of the spectral information provided by different wavelength ranges and the subsequent complex classification still remains challenging. In this paper we demonstrate the benefits of mineral classification employed to optical and thermal hyperspectral data (CASI and SASI: 0.4-2.5 micrometer; TASI: 8.6-11.5 micrometer) when using new tools (QUANTools) developed at the Czech Geological Survey (CGS). The concept is based on the automatic detection of multiple absorption features; moreover it allows quick data processing and classification without requiring endmember definition prior to spectral mapping. As a result 12 mineral classes were identified integrating together the spectral information from CASI, SASI and TASI imaging data. A representative sample for each mapped class was collected and, consequently, semi-quantitative XRD diffraction analysis was conducted to resolve the mineralogy in further detail. We can conclude that the new concept allows for quick integration and classification of the VIS/NIR, SWIR and LWIR hyperspectral data. The approach can increase time/cost efficiency as the validation samples can be collected after image classification targeting specifically the identified surface variability (e.g., mapped classes).

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

  • OECD FORD obor

    20705 - Remote sensing

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA17-05743S" target="_blank" >GA17-05743S: Nový spektrální pohled na biogeochemii malých lesních povodí</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů