The vanadium isotope composition of Mars: implications for planetary differentiation in the early solar system
Popis výsledku
Identifikátory výsledku
Kód výsledku v IS VaVaI
Výsledek na webu
DOI - Digital Object Identifier
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The vanadium isotope composition of Mars: implications for planetary differentiation in the early solar system
Popis výsledku v původním jazyce
The V isotope composition of martian meteorites reveals that Bulk Silicate Mars (BSM) is characterised by d51V = −1.026 ± 0.029 permil (2 s.e.) and is thus ∼0.06 per mille heavier than chondrites and ∼0.17 permil lighter than Bulk Silicate Earth (BSE). Based on the invariant V isotope compositions of all chondrite groups, the heavier V isotope compositions of BSE and BSM relative to chondrites are unlikely to originate from mass independent isotope effects or evaporation/condensation processes in the early Solar System. These differences are best accounted for by mass dependent fractionation during core formation. Assuming that bulk Earth and Mars both have a chondritic V isotopic compostion, mass balance considerations reveal V isotope fractionation factors D51Vcore-mantle as substantial as −0.6 permil for both planets. This suggests that V isotope systematics in terrestrial and extraterrestrial rocks potentially constitutes a powerful new tracer of planetary differentiation processes accross the Solar System.
Název v anglickém jazyce
The vanadium isotope composition of Mars: implications for planetary differentiation in the early solar system
Popis výsledku anglicky
The V isotope composition of martian meteorites reveals that Bulk Silicate Mars (BSM) is characterised by d51V = −1.026 ± 0.029 permil (2 s.e.) and is thus ∼0.06 per mille heavier than chondrites and ∼0.17 permil lighter than Bulk Silicate Earth (BSE). Based on the invariant V isotope compositions of all chondrite groups, the heavier V isotope compositions of BSE and BSM relative to chondrites are unlikely to originate from mass independent isotope effects or evaporation/condensation processes in the early Solar System. These differences are best accounted for by mass dependent fractionation during core formation. Assuming that bulk Earth and Mars both have a chondritic V isotopic compostion, mass balance considerations reveal V isotope fractionation factors D51Vcore-mantle as substantial as −0.6 permil for both planets. This suggests that V isotope systematics in terrestrial and extraterrestrial rocks potentially constitutes a powerful new tracer of planetary differentiation processes accross the Solar System.
Klasifikace
Druh
Jimp - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10505 - Geology
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Geochemical Perspectives Letters
ISSN
2410-339X
e-ISSN
—
Svazek periodika
15
Číslo periodika v rámci svazku
September
Stát vydavatele periodika
FR - Francouzská republika
Počet stran výsledku
5
Strana od-do
35-39
Kód UT WoS článku
000582739500001
EID výsledku v databázi Scopus
—
Základní informace
Druh výsledku
Jimp - Článek v periodiku v databázi Web of Science
OECD FORD
Geology
Rok uplatnění
2020