Engineering geological limits of the urban development of the Brno city
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00025798%3A_____%2F20%3A00000419" target="_blank" >RIV/00025798:_____/20:00000419 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.geopaleo.fns.uniba.sk/ageos/articles/abstract.php?path=krejci_et_al&vol=12&iss=2" target="_blank" >http://www.geopaleo.fns.uniba.sk/ageos/articles/abstract.php?path=krejci_et_al&vol=12&iss=2</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Engineering geological limits of the urban development of the Brno city
Popis výsledku v původním jazyce
The area of the city of Brno was limited by natural conditions and from the 12th century also by human activity. The main geological structure here is north part of the Nesvačilka Graben in the surface area filled with Neogene clays of the Late Burdigalian and Langhian age. Neogene clays are fine-grained soils whose internal structure fundamentally affects their mechanical properties. These clays are significantly anisotropic, frost sensitive and susceptible to volume changes (shrinkage, swelling). In the surface parts they weather, crush and are prone to sliding. They are risky from the aspect of slope stability problems and when being exposed in construction pits. The surface of the Neogene clays on the raised blocks is located close to the surface and is mainly covered by anthropogenic fillings. Above the tectonically downslipped blocks, the surface of Neogene clays is usually below 10–15 m Quaternary sediments. At the areas of the elevated blocks and along the west edge of the Nesvačilka Graben, the clays crop out directly onto the surface or are covered by a thin layer of aeolian sediments. Human activity was proved mainly by the creation of numerous open pits for building materials, which were subsequently built up by continuous development. Many old built-up quarries are endangered until today by rockfalls. In the historical part of the city, the stability conditions were aggravated by a number of historical cellar systems and deposits up to 10 meters thick, which consist of the anthropogenic dump. The susceptibility to slope instabilities was modelled by a multivariate statistical method on the map sheet 1:25 000 Brno-sever 24-324, with an area of 115.45 km2. The method combines input parameters (geology, land use, altitude, slope angle, aspect, relief curvature, presence of tectonic lines) and compares them with the occurrence of slope instabilities in the particular area. In addition, a layer of Neogene clays was used here, since this geological unit plays an important role in the Brno agglomeration.
Název v anglickém jazyce
Engineering geological limits of the urban development of the Brno city
Popis výsledku anglicky
The area of the city of Brno was limited by natural conditions and from the 12th century also by human activity. The main geological structure here is north part of the Nesvačilka Graben in the surface area filled with Neogene clays of the Late Burdigalian and Langhian age. Neogene clays are fine-grained soils whose internal structure fundamentally affects their mechanical properties. These clays are significantly anisotropic, frost sensitive and susceptible to volume changes (shrinkage, swelling). In the surface parts they weather, crush and are prone to sliding. They are risky from the aspect of slope stability problems and when being exposed in construction pits. The surface of the Neogene clays on the raised blocks is located close to the surface and is mainly covered by anthropogenic fillings. Above the tectonically downslipped blocks, the surface of Neogene clays is usually below 10–15 m Quaternary sediments. At the areas of the elevated blocks and along the west edge of the Nesvačilka Graben, the clays crop out directly onto the surface or are covered by a thin layer of aeolian sediments. Human activity was proved mainly by the creation of numerous open pits for building materials, which were subsequently built up by continuous development. Many old built-up quarries are endangered until today by rockfalls. In the historical part of the city, the stability conditions were aggravated by a number of historical cellar systems and deposits up to 10 meters thick, which consist of the anthropogenic dump. The susceptibility to slope instabilities was modelled by a multivariate statistical method on the map sheet 1:25 000 Brno-sever 24-324, with an area of 115.45 km2. The method combines input parameters (geology, land use, altitude, slope angle, aspect, relief curvature, presence of tectonic lines) and compares them with the occurrence of slope instabilities in the particular area. In addition, a layer of Neogene clays was used here, since this geological unit plays an important role in the Brno agglomeration.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10505 - Geology
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Acta Geologica Slovaca
ISSN
1338-0044
e-ISSN
—
Svazek periodika
12
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
SK - Slovenská republika
Počet stran výsledku
13
Strana od-do
107-119
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85104258230