The Importance of Mechanical Transport, Rock Texture, and Mineral Chemistry in Chemical Weathering of Granites: The Melechov Massif, Czech Republic
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00025798%3A_____%2F21%3A00000090" target="_blank" >RIV/00025798:_____/21:00000090 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.intechopen.com/chapters/71267" target="_blank" >https://www.intechopen.com/chapters/71267</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5772/intechopen.91383" target="_blank" >10.5772/intechopen.91383</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The Importance of Mechanical Transport, Rock Texture, and Mineral Chemistry in Chemical Weathering of Granites: The Melechov Massif, Czech Republic
Popis výsledku v původním jazyce
Data of 41 or more elements in superficial as well as drill-core samples of the peraluminous Lipnice and Melechov granites, located several kilometers apart in northern Moldanubian Batholith, are evaluated. Weathering of both granite types proceeded in virtually identical time and environment, but it shows very different patterns. In the weathered Lipnice granite, Al2O3 slightly increased, loss on ignition (LOI) increased strongly, and contents of all other major elements except for Fe are lower (however, reconcentration of K, Mg, and Ti in secondary phases is possible). In the relatively coarse-grained and more acidic Melechov granite, the depleted major elements are Si, Fe, Ti, Mn, and Mg. Strongly increased Al in half of weathered samples is independent on the moderate increase of LOI and relatively small changes of Na, Ca, K, and P contents. These samples are relatively poor in quartz, which is the result of fossil weathering, mechanical mineral separation, and erosion processes. In the Lipnice granite, however, chemical weathering dominated over mechanical fractionation due to a more compact character of the rock (as well as of biotite and plagioclase). Regarding trace elements, enrichment in Ga and loss of U are the only changes documented in both granite types (in different proportions however). The rare-earth element (REE) fractionation is generally weak, but in the Lipnice granite, two processes are proven: (i) dissolution of apatite which has an M-type lanthanide tetrad effect in the fresh rock and (ii) formation of positive Ce anomaly.
Název v anglickém jazyce
The Importance of Mechanical Transport, Rock Texture, and Mineral Chemistry in Chemical Weathering of Granites: The Melechov Massif, Czech Republic
Popis výsledku anglicky
Data of 41 or more elements in superficial as well as drill-core samples of the peraluminous Lipnice and Melechov granites, located several kilometers apart in northern Moldanubian Batholith, are evaluated. Weathering of both granite types proceeded in virtually identical time and environment, but it shows very different patterns. In the weathered Lipnice granite, Al2O3 slightly increased, loss on ignition (LOI) increased strongly, and contents of all other major elements except for Fe are lower (however, reconcentration of K, Mg, and Ti in secondary phases is possible). In the relatively coarse-grained and more acidic Melechov granite, the depleted major elements are Si, Fe, Ti, Mn, and Mg. Strongly increased Al in half of weathered samples is independent on the moderate increase of LOI and relatively small changes of Na, Ca, K, and P contents. These samples are relatively poor in quartz, which is the result of fossil weathering, mechanical mineral separation, and erosion processes. In the Lipnice granite, however, chemical weathering dominated over mechanical fractionation due to a more compact character of the rock (as well as of biotite and plagioclase). Regarding trace elements, enrichment in Ga and loss of U are the only changes documented in both granite types (in different proportions however). The rare-earth element (REE) fractionation is generally weak, but in the Lipnice granite, two processes are proven: (i) dissolution of apatite which has an M-type lanthanide tetrad effect in the fresh rock and (ii) formation of positive Ce anomaly.
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
—
OECD FORD obor
10505 - Geology
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Geochemistry
ISBN
978-1-83962-851-1
Počet stran výsledku
25
Strana od-do
73-97
Počet stran knihy
300
Název nakladatele
Intechopen Limited
Místo vydání
London
Kód UT WoS kapitoly
—