Porous Melt Flow in Continental Crust-A Numerical Modeling Study
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00025798%3A_____%2F23%3A10168692" target="_blank" >RIV/00025798:_____/23:10168692 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11320/23:10475416
Výsledek na webu
<a href="https://doi.org/10.1029/2023JB026523" target="_blank" >https://doi.org/10.1029/2023JB026523</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1029/2023JB026523" target="_blank" >10.1029/2023JB026523</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Porous Melt Flow in Continental Crust-A Numerical Modeling Study
Popis výsledku v původním jazyce
In continental crust, rapid melt flow through macroscopic conduits is usually envisaged as the most efficient form of melt transport. In contrast, there is growing evidence that in hot continental crust, grain-scale to meso-scale porous melt flow may operate over long distances and over millions of years. Here, we investigate the dynamics of such porous melt flow by means of two-dimensional thermo-mechanical numerical models using the code ASPECT. Our models are crustal-scale and describe the network of pores through which the melt flows by permeability that depends on the spacing of the pores. Our results suggest that assuming realistic material properties, melt can slowly migrate in the hot and thick continental crust through pores with a characteristic spacing of 1 mm or larger. Despite its low velocity (millimeters to centimeters per year), over millions of years, such flow can create large partially molten zones in the middle-lower crust and significantly affect its thermal state, deformation, and composition. We examined the role of the permeability, melt and solid viscosities, the slope of the melting curve and temperature conditions. We obtained contrasting styles of melt distribution, melt flow, and solid deformation, which can be categorized as melt-enhanced convection, growth of partially molten diapirs and melt percolation in porosity waves. Our numerical experiments further indicate that grain-scale porous flow is more likely in rocks where the melt productivity increases slowly with temperature, such as in metaigneous rocks.
Název v anglickém jazyce
Porous Melt Flow in Continental Crust-A Numerical Modeling Study
Popis výsledku anglicky
In continental crust, rapid melt flow through macroscopic conduits is usually envisaged as the most efficient form of melt transport. In contrast, there is growing evidence that in hot continental crust, grain-scale to meso-scale porous melt flow may operate over long distances and over millions of years. Here, we investigate the dynamics of such porous melt flow by means of two-dimensional thermo-mechanical numerical models using the code ASPECT. Our models are crustal-scale and describe the network of pores through which the melt flows by permeability that depends on the spacing of the pores. Our results suggest that assuming realistic material properties, melt can slowly migrate in the hot and thick continental crust through pores with a characteristic spacing of 1 mm or larger. Despite its low velocity (millimeters to centimeters per year), over millions of years, such flow can create large partially molten zones in the middle-lower crust and significantly affect its thermal state, deformation, and composition. We examined the role of the permeability, melt and solid viscosities, the slope of the melting curve and temperature conditions. We obtained contrasting styles of melt distribution, melt flow, and solid deformation, which can be categorized as melt-enhanced convection, growth of partially molten diapirs and melt percolation in porosity waves. Our numerical experiments further indicate that grain-scale porous flow is more likely in rocks where the melt productivity increases slowly with temperature, such as in metaigneous rocks.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10505 - Geology
Návaznosti výsledku
Projekt
<a href="/cs/project/GA23-07821S" target="_blank" >GA23-07821S: Pervazivní tok taveniny kontinentální kůrou: mikroskopický proces s rozsáhlými důsledky</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Geophysical Research -Solid Earth
ISSN
2169-9313
e-ISSN
—
Svazek periodika
128
Číslo periodika v rámci svazku
8
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
25
Strana od-do
—
Kód UT WoS článku
001044732700001
EID výsledku v databázi Scopus
2-s2.0-85167358403