Trace element signatures in scheelite associated with various deposit types: A tool for mineral targeting
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00025798%3A_____%2F24%3A10169108" target="_blank" >RIV/00025798:_____/24:10169108 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.gexplo.2024.107555" target="_blank" >https://doi.org/10.1016/j.gexplo.2024.107555</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.gexplo.2024.107555" target="_blank" >10.1016/j.gexplo.2024.107555</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Trace element signatures in scheelite associated with various deposit types: A tool for mineral targeting
Popis výsledku v původním jazyce
Scheelite is a widespread mineral in several geological settings and its trace element composition provides valuable information about the source and composition of the hydrothermal fluids. In this study, scheelite from 22 magmatic-hydrothermal deposits and 2 orogenic Au deposits (Hangar Flats and Corcoesto) were analyzed by EPMA and LA-ICP-MS. Magmatic-hydrothermal scheelite, together with literature data are investigated using partial least square-discriminant analysis (PLS-DA) and Random Forest (RF) classifier, to evaluate the use of scheelite as a robust indicator mineral for W-bearing deposit targeting. Cathodoluminescence images show that scheelite is texturally homogeneous in reduced intrusion-related gold systems (RIRGS) and varies from homogeneous to heterogeneous in other magmatic-hydrothermal and orogenic Au deposits. Scheelite displays six REE chondrite-normalized patterns, which are a function of the source and composition (mainly salinity) of the mineralizing fluids and partitioning with co-genetic minerals (e.g., garnet, clinopyroxene). The PLS-DA highlights that scheelite trace element composition from magmatic-hydrothermal deposits varies following different deposit types (e.g., oxidized and reduced skarns, porphyry WMo, RIRGS, quartz-vein/greisen SnW), and that such compositional variation reflects mainly the difference of fO(2) and composition of mineralizing fluids. Additionally, scheelite from magmatic-hydrothermal deposits are chemically distinct to those formed dominantly by metamorphic fluids in orogenic settings as shown by their higher Mo, Nb and Mn, and lower Sr contents and predominantly negative Eu anomalies. Metamorphic scheelite can be discriminated from that of orogenic Au deposits by their lower Pb, As and REE contents and LREE/HREE ratios, which are related to local host rock composition and metamorphic grade. Using Na, Mg, Mn, As, Sr, Y, Nb, Mo, Pb, Sigma REE concentrations and Eu anomaly as predictors, the RF model yields an overall prediction accuracy of 97 % for test data as function of deposit types (89.2 % for RIRGS, 100 % for porphyry WMo, 97.8 % for quartz-vein/greisen SnW, 96.9 % for oxidized skarn, 98.1 % for reduced skarn and 99.3 % for orogenic Au deposits). Application of RF classifier to scheelite composition from orogenic Au and skarn- and greisen-type W deposits from literature yields an overall prediction of similar to 79 % (91 % for oxidized skarn, 71.4 % for quartz-vein/greisen SnW and 74.2 % for orogenic Au deposits) showing that scheelite is an efficient indicator mineral for Au and W deposits targeting. Metamorphic scheelite is predicted mostly as orogenic Au scheelite (83 %), reflecting the genesis of metamorphic fluids and similar geological setting, suggesting that RF classifier can be also used to predict the fluid sources.
Název v anglickém jazyce
Trace element signatures in scheelite associated with various deposit types: A tool for mineral targeting
Popis výsledku anglicky
Scheelite is a widespread mineral in several geological settings and its trace element composition provides valuable information about the source and composition of the hydrothermal fluids. In this study, scheelite from 22 magmatic-hydrothermal deposits and 2 orogenic Au deposits (Hangar Flats and Corcoesto) were analyzed by EPMA and LA-ICP-MS. Magmatic-hydrothermal scheelite, together with literature data are investigated using partial least square-discriminant analysis (PLS-DA) and Random Forest (RF) classifier, to evaluate the use of scheelite as a robust indicator mineral for W-bearing deposit targeting. Cathodoluminescence images show that scheelite is texturally homogeneous in reduced intrusion-related gold systems (RIRGS) and varies from homogeneous to heterogeneous in other magmatic-hydrothermal and orogenic Au deposits. Scheelite displays six REE chondrite-normalized patterns, which are a function of the source and composition (mainly salinity) of the mineralizing fluids and partitioning with co-genetic minerals (e.g., garnet, clinopyroxene). The PLS-DA highlights that scheelite trace element composition from magmatic-hydrothermal deposits varies following different deposit types (e.g., oxidized and reduced skarns, porphyry WMo, RIRGS, quartz-vein/greisen SnW), and that such compositional variation reflects mainly the difference of fO(2) and composition of mineralizing fluids. Additionally, scheelite from magmatic-hydrothermal deposits are chemically distinct to those formed dominantly by metamorphic fluids in orogenic settings as shown by their higher Mo, Nb and Mn, and lower Sr contents and predominantly negative Eu anomalies. Metamorphic scheelite can be discriminated from that of orogenic Au deposits by their lower Pb, As and REE contents and LREE/HREE ratios, which are related to local host rock composition and metamorphic grade. Using Na, Mg, Mn, As, Sr, Y, Nb, Mo, Pb, Sigma REE concentrations and Eu anomaly as predictors, the RF model yields an overall prediction accuracy of 97 % for test data as function of deposit types (89.2 % for RIRGS, 100 % for porphyry WMo, 97.8 % for quartz-vein/greisen SnW, 96.9 % for oxidized skarn, 98.1 % for reduced skarn and 99.3 % for orogenic Au deposits). Application of RF classifier to scheelite composition from orogenic Au and skarn- and greisen-type W deposits from literature yields an overall prediction of similar to 79 % (91 % for oxidized skarn, 71.4 % for quartz-vein/greisen SnW and 74.2 % for orogenic Au deposits) showing that scheelite is an efficient indicator mineral for Au and W deposits targeting. Metamorphic scheelite is predicted mostly as orogenic Au scheelite (83 %), reflecting the genesis of metamorphic fluids and similar geological setting, suggesting that RF classifier can be also used to predict the fluid sources.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10504 - Mineralogy
Návaznosti výsledku
Projekt
<a href="/cs/project/SS02030023" target="_blank" >SS02030023: Horninové prostředí a suroviny</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Geochemical Exploration
ISSN
0375-6742
e-ISSN
1879-1689
Svazek periodika
266
Číslo periodika v rámci svazku
107555
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
23
Strana od-do
—
Kód UT WoS článku
001295805300001
EID výsledku v databázi Scopus
2-s2.0-85200994814