Optimizing Well Placement for Sustainable Irrigation: A Two-Stage Stochastic Mixed Integer Programming Approach
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00025798%3A_____%2F24%3A10169489" target="_blank" >RIV/00025798:_____/24:10169489 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.3390/w16192715" target="_blank" >https://doi.org/10.3390/w16192715</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/w16192715" target="_blank" >10.3390/w16192715</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Optimizing Well Placement for Sustainable Irrigation: A Two-Stage Stochastic Mixed Integer Programming Approach
Popis výsledku v původním jazyce
Utilizing groundwater offers a promising solution to alleviate water stress in Ethiopia, providing a dependable and sustainable water source, particularly in regions with limited or unreliable surface water availability. However, effective decision-making regarding well drilling and placement is essential to maximize groundwater resource potential, enhancing agricultural productivity, reducing hunger, and bolstering food security in Ethiopia. This study concentrates on the development of two-stage stochastic mixed integer programming (SMIP) models to optimize well placement for sustainable agricultural irrigation, considering uncertain demand scenarios. Additionally, a deterministic mixed integer programming model is formulated for comparison with the two-stage SMIP. Experiments are conducted to explore various demand scenario distributions, revealing that the optimized total cost for the two-stage SMIP generally exceeds that of a deterministic setting, aligning with the two-stage SMIP's focus on long-term benefits. Moreover, slight differences are observed in well layouts under different assumption scenarios. The study also examines the impact of selected parameters, such as fixed construction costs, per-meter drilling costs, and demand scenarios. The out-of-sample performance shows that the stochastic model is more flexible and resilient, with 11% and 4% lower costs than deterministic cases 1 and 3, respectively. This flexibility provides a more robust long-term strategy for well placement and resource allocation in groundwater management.
Název v anglickém jazyce
Optimizing Well Placement for Sustainable Irrigation: A Two-Stage Stochastic Mixed Integer Programming Approach
Popis výsledku anglicky
Utilizing groundwater offers a promising solution to alleviate water stress in Ethiopia, providing a dependable and sustainable water source, particularly in regions with limited or unreliable surface water availability. However, effective decision-making regarding well drilling and placement is essential to maximize groundwater resource potential, enhancing agricultural productivity, reducing hunger, and bolstering food security in Ethiopia. This study concentrates on the development of two-stage stochastic mixed integer programming (SMIP) models to optimize well placement for sustainable agricultural irrigation, considering uncertain demand scenarios. Additionally, a deterministic mixed integer programming model is formulated for comparison with the two-stage SMIP. Experiments are conducted to explore various demand scenario distributions, revealing that the optimized total cost for the two-stage SMIP generally exceeds that of a deterministic setting, aligning with the two-stage SMIP's focus on long-term benefits. Moreover, slight differences are observed in well layouts under different assumption scenarios. The study also examines the impact of selected parameters, such as fixed construction costs, per-meter drilling costs, and demand scenarios. The out-of-sample performance shows that the stochastic model is more flexible and resilient, with 11% and 4% lower costs than deterministic cases 1 and 3, respectively. This flexibility provides a more robust long-term strategy for well placement and resource allocation in groundwater management.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10503 - Water resources
Návaznosti výsledku
Projekt
—
Návaznosti
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
WATER
ISSN
—
e-ISSN
2073-4441
Svazek periodika
16
Číslo periodika v rámci svazku
19
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
23
Strana od-do
—
Kód UT WoS článku
001332139400001
EID výsledku v databázi Scopus
2-s2.0-85206499576