Measuring individual identity information in animal signals: Overview and performance of available identity metrics
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00027014%3A_____%2F19%3AN0000117" target="_blank" >RIV/00027014:_____/19:N0000117 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68081766:_____/19:00505878 RIV/60460709:41210/19:79544 RIV/60460709:41320/19:79544 RIV/60460709:41330/19:79544 a 2 dalších
Výsledek na webu
<a href="https://vuzv.cz/_privat/19116.pdf" target="_blank" >https://vuzv.cz/_privat/19116.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1111/2041-210X.13238" target="_blank" >10.1111/2041-210X.13238</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Measuring individual identity information in animal signals: Overview and performance of available identity metrics
Popis výsledku v původním jazyce
Identity signals have been studied for over 50 years but, and somewhat remarkably, there is no consensus as to how to quantify individuality in animal signals. While there is a variety of different metrics to quantify individuality, these methods remain un-validated and the relationships between them unclear. We contrasted three univariate and four multivariate identity metrics (and their different computational variants) and evaluated their performance on simulated and empirical datasets. Of the metrics examined, Beecher's information statistic (HS) performed closest to theoretical expectations and requirements for an ideal identity metric. It could be also easily and reliably converted into the commonly used discrimination score (and vice versa). Although Beecher's information statistic is not entirely independent of study sampling, this problem can be considerably lessened by reducing the number of parameters or by increasing the number of individuals in the analysis. Because it is easily calculated, has superior performance, can be used to quantify identity information in single variable or in a complete signal and because it indicates the number of individuals who can be discriminated given a set of measurements, we recommend that individuality should be quantified using Beecher's information statistic in future studies. Consistent use of Beecher's information statistic could enable meaningful comparisons and integration of results across different studies of individual identity signals. © 2019 The Authors. Methods in Ecology and Evolution
Název v anglickém jazyce
Measuring individual identity information in animal signals: Overview and performance of available identity metrics
Popis výsledku anglicky
Identity signals have been studied for over 50 years but, and somewhat remarkably, there is no consensus as to how to quantify individuality in animal signals. While there is a variety of different metrics to quantify individuality, these methods remain un-validated and the relationships between them unclear. We contrasted three univariate and four multivariate identity metrics (and their different computational variants) and evaluated their performance on simulated and empirical datasets. Of the metrics examined, Beecher's information statistic (HS) performed closest to theoretical expectations and requirements for an ideal identity metric. It could be also easily and reliably converted into the commonly used discrimination score (and vice versa). Although Beecher's information statistic is not entirely independent of study sampling, this problem can be considerably lessened by reducing the number of parameters or by increasing the number of individuals in the analysis. Because it is easily calculated, has superior performance, can be used to quantify identity information in single variable or in a complete signal and because it indicates the number of individuals who can be discriminated given a set of measurements, we recommend that individuality should be quantified using Beecher's information statistic in future studies. Consistent use of Beecher's information statistic could enable meaningful comparisons and integration of results across different studies of individual identity signals. © 2019 The Authors. Methods in Ecology and Evolution
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10614 - Behavioral sciences biology
Návaznosti výsledku
Projekt
<a href="/cs/project/GA14-27925S" target="_blank" >GA14-27925S: Ontogenetická a sociální determinace hlasové individuality prasat</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Methods in Ecology and Evolution
ISSN
2041-210X
e-ISSN
—
Svazek periodika
10
Číslo periodika v rámci svazku
9
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
13
Strana od-do
1558-1570
Kód UT WoS článku
000483699600017
EID výsledku v databázi Scopus
2-s2.0-85068530736