Characterisation and identification of individual intact goat muscle samples (Capra sp.) using a portable near-infrared spectrometer and chemometrics
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00027014%3A_____%2F22%3AN0000128" target="_blank" >RIV/00027014:_____/22:N0000128 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/60460709:41210/22:92256
Výsledek na webu
<a href="http://mdpi.com" target="_blank" >http://mdpi.com</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/foods11182894" target="_blank" >10.3390/foods11182894</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Characterisation and identification of individual intact goat muscle samples (Capra sp.) using a portable near-infrared spectrometer and chemometrics
Popis výsledku v původním jazyce
Adulterated, poor quality and unsafe meat are still major challenges for the meat industry which have driven efforts to find alternative technologies to detect these challenges. This study evaluated the use of a portable near infrared (NIR) instrument combined with machine learning techniques to identify and classify individual-intact goat muscles. Fresh goat carcasses (n=35; 19 to 21.7 Kg LW) from different breeds and sex were sourced and cut in different commercial cuts. The longissimus thoracis et lumborum, biceps femoris, semimembranosus, semitendinosus, supraspinatus, and infraspinatus muscles were removed and scanned (900 – 1600 nm). Differences in the NIR spectra of the muscles were observed at wavelengths around 976 nm, 1180 nm and 1430 nm associated with water and fat content (IMF). The classification of individual muscles was achieved by linear discriminant analysis (LDA) with acceptable accuracies (68- 94%) using the second derivative NIR spectra. The results indicated that NIR spectroscopy can be used to identify individual goat muscles.
Název v anglickém jazyce
Characterisation and identification of individual intact goat muscle samples (Capra sp.) using a portable near-infrared spectrometer and chemometrics
Popis výsledku anglicky
Adulterated, poor quality and unsafe meat are still major challenges for the meat industry which have driven efforts to find alternative technologies to detect these challenges. This study evaluated the use of a portable near infrared (NIR) instrument combined with machine learning techniques to identify and classify individual-intact goat muscles. Fresh goat carcasses (n=35; 19 to 21.7 Kg LW) from different breeds and sex were sourced and cut in different commercial cuts. The longissimus thoracis et lumborum, biceps femoris, semimembranosus, semitendinosus, supraspinatus, and infraspinatus muscles were removed and scanned (900 – 1600 nm). Differences in the NIR spectra of the muscles were observed at wavelengths around 976 nm, 1180 nm and 1430 nm associated with water and fat content (IMF). The classification of individual muscles was achieved by linear discriminant analysis (LDA) with acceptable accuracies (68- 94%) using the second derivative NIR spectra. The results indicated that NIR spectroscopy can be used to identify individual goat muscles.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
21101 - Food and beverages
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Foods
ISSN
2304-8158
e-ISSN
—
Svazek periodika
11
Číslo periodika v rámci svazku
18
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
8
Strana od-do
Article number: 2894
Kód UT WoS článku
000860107700001
EID výsledku v databázi Scopus
2-s2.0-85138646786