Supervised Segmentation of Ultra-High-Density Drone Lidar for Large-Area Mapping of Individual Trees
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00027073%3A_____%2F20%3AN0000034" target="_blank" >RIV/00027073:_____/20:N0000034 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/62156489:43410/20:43918451
Výsledek na webu
<a href="https://www.mdpi.com/2072-4292/12/19/3260" target="_blank" >https://www.mdpi.com/2072-4292/12/19/3260</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/rs12193260" target="_blank" >10.3390/rs12193260</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Supervised Segmentation of Ultra-High-Density Drone Lidar for Large-Area Mapping of Individual Trees
Popis výsledku v původním jazyce
We applied a supervised individual-tree segmentation algorithm to ultra-high-density drone lidar in a temperate mountain forest in the southern Czech Republic. We compared the number of trees correctly segmented, stem diameter at breast height (DBH), and tree height from drone-lidar segmentations to field-inventory measurements and segmentations from terrestrial laser scanning (TLS) data acquired within two days of the drone-lidar acquisition. Our analysis detected 51% of the stems >15 cm DBH, and 87% of stems >50 cm DBH. Errors of omission were much more common for smaller trees than for larger ones, and were caused by removal of points prior to segmentation using a low-intensity and morphological filter. Analysis of segmented trees indicates a strong linear relationship between DBH from drone-lidar segmentations and TLS data. The slope of this relationship is 0.93, the intercept is 4.28 cm, and the r(2) is 0.98. However, drone lidar and TLS segmentations overestimated DBH for the smallest trees and underestimated DBH for the largest trees in comparison to field data. We evaluate the impact of random error in point locations and variation in footprint size, and demonstrate that random error in point locations is likely to cause an overestimation bias for small-DBH trees. A Random Forest classifier correctly identified broadleaf and needleleaf trees using stem and crown geometric properties with overall accuracy of 85.9%. We used these classifications and DBH estimates from drone-lidar segmentations to apply allometric scaling equations to segmented individual trees. The stand-level aboveground biomass (AGB) estimate using these data is 76% of the value obtained using a traditional field inventory. We demonstrate that 71% of the omitted AGB is due to segmentation errors of omission, and the remaining 29% is due to DBH estimation errors. Our analysis indicates that high-density measurements from low-altitude drone flight can produce DBH estimates for individual trees that are comparable to TLS. These data can be collected rapidly throughout areas large enough to produce landscape-scale estimates. With additional refinement, these estimates could augment or replace manual field inventories, and could support the calibration and validation of current and forthcoming space missions.
Název v anglickém jazyce
Supervised Segmentation of Ultra-High-Density Drone Lidar for Large-Area Mapping of Individual Trees
Popis výsledku anglicky
We applied a supervised individual-tree segmentation algorithm to ultra-high-density drone lidar in a temperate mountain forest in the southern Czech Republic. We compared the number of trees correctly segmented, stem diameter at breast height (DBH), and tree height from drone-lidar segmentations to field-inventory measurements and segmentations from terrestrial laser scanning (TLS) data acquired within two days of the drone-lidar acquisition. Our analysis detected 51% of the stems >15 cm DBH, and 87% of stems >50 cm DBH. Errors of omission were much more common for smaller trees than for larger ones, and were caused by removal of points prior to segmentation using a low-intensity and morphological filter. Analysis of segmented trees indicates a strong linear relationship between DBH from drone-lidar segmentations and TLS data. The slope of this relationship is 0.93, the intercept is 4.28 cm, and the r(2) is 0.98. However, drone lidar and TLS segmentations overestimated DBH for the smallest trees and underestimated DBH for the largest trees in comparison to field data. We evaluate the impact of random error in point locations and variation in footprint size, and demonstrate that random error in point locations is likely to cause an overestimation bias for small-DBH trees. A Random Forest classifier correctly identified broadleaf and needleleaf trees using stem and crown geometric properties with overall accuracy of 85.9%. We used these classifications and DBH estimates from drone-lidar segmentations to apply allometric scaling equations to segmented individual trees. The stand-level aboveground biomass (AGB) estimate using these data is 76% of the value obtained using a traditional field inventory. We demonstrate that 71% of the omitted AGB is due to segmentation errors of omission, and the remaining 29% is due to DBH estimation errors. Our analysis indicates that high-density measurements from low-altitude drone flight can produce DBH estimates for individual trees that are comparable to TLS. These data can be collected rapidly throughout areas large enough to produce landscape-scale estimates. With additional refinement, these estimates could augment or replace manual field inventories, and could support the calibration and validation of current and forthcoming space missions.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
40102 - Forestry
Návaznosti výsledku
Projekt
<a href="/cs/project/LTAUSA18200" target="_blank" >LTAUSA18200: Porozumění struktuře a dynamice temperátních lesů severní hemisféry – Úvod do třetího rozměru</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Remote Sensing
ISSN
2072-4292
e-ISSN
—
Svazek periodika
12
Číslo periodika v rámci svazku
19
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
16
Strana od-do
3260
Kód UT WoS článku
000587178000001
EID výsledku v databázi Scopus
2-s2.0-85092794999