Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Can in situ spectral measurements under disturbance-reduced environmental conditions help improve soil organic carbon estimation?

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00027073%3A_____%2F22%3AN0000117" target="_blank" >RIV/00027073:_____/22:N0000117 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/60460709:41210/22:91397 RIV/60460709:41330/22:91397

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/abs/pii/S0048969722034015" target="_blank" >https://www.sciencedirect.com/science/article/abs/pii/S0048969722034015</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.scitotenv.2022.156304" target="_blank" >10.1016/j.scitotenv.2022.156304</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Can in situ spectral measurements under disturbance-reduced environmental conditions help improve soil organic carbon estimation?

  • Popis výsledku v původním jazyce

    In situ visible and near-infrared (Vis-NIR) spectroscopy has proven to be a reliable tool for determining soil organic carbon (SOC) content with a small loss of precision as compared to laboratory measurements. The loss of precision is a result of disturbing external environmental factors that disrupt spectral measurements. For example, roughness, changes in weather conditions, humidity, temperature, human factors, spectral noise and especially soil water. It has been assumed that, in situ predictive capability could be improved if some of these factors are either minimized or eliminated during the in situ measurement. For this study, the prediction of SOC was carried out under two different in situ measurement conditions; less favourable environmental conditions (with disturbances) and more favourable site-specific conditions (disturbance-reduced conditions). The primary goal is to determine whether the estimate of SOC can be improved under more favourable site-specific conditions, as well as the impact of pre-treatment algorithms on both less and more favourable disturbed conditions. The study employed a large range of pretreatment algorithms and their combinations. Three separate multivariate models were used to predict SOC, namely Cubist, support vector machine regression (SVMR), and partial least squares regression (PLSR). The result clearly shows that reduced disturbing factors (i.e., drier and unploughed soil as well as noise reduction) result in an improvement of SOC prediction with in situ Vis-NIR spectroscopy. The best overall result was achieved with SVMR (R2CV = 0.72, RMSEPcv = 0.21, RPIQ = 2.34). Although the combination of pre-treatment algorithms resulted in an improvement, overall, these pre-treatment algorithms could not compensate for the factors affecting the measured spectra with disturbance. Though the obtained result is promising, further study is still needed to disentangle the impacts and interactions of various disturbing factors for different soil types.

  • Název v anglickém jazyce

    Can in situ spectral measurements under disturbance-reduced environmental conditions help improve soil organic carbon estimation?

  • Popis výsledku anglicky

    In situ visible and near-infrared (Vis-NIR) spectroscopy has proven to be a reliable tool for determining soil organic carbon (SOC) content with a small loss of precision as compared to laboratory measurements. The loss of precision is a result of disturbing external environmental factors that disrupt spectral measurements. For example, roughness, changes in weather conditions, humidity, temperature, human factors, spectral noise and especially soil water. It has been assumed that, in situ predictive capability could be improved if some of these factors are either minimized or eliminated during the in situ measurement. For this study, the prediction of SOC was carried out under two different in situ measurement conditions; less favourable environmental conditions (with disturbances) and more favourable site-specific conditions (disturbance-reduced conditions). The primary goal is to determine whether the estimate of SOC can be improved under more favourable site-specific conditions, as well as the impact of pre-treatment algorithms on both less and more favourable disturbed conditions. The study employed a large range of pretreatment algorithms and their combinations. Three separate multivariate models were used to predict SOC, namely Cubist, support vector machine regression (SVMR), and partial least squares regression (PLSR). The result clearly shows that reduced disturbing factors (i.e., drier and unploughed soil as well as noise reduction) result in an improvement of SOC prediction with in situ Vis-NIR spectroscopy. The best overall result was achieved with SVMR (R2CV = 0.72, RMSEPcv = 0.21, RPIQ = 2.34). Although the combination of pre-treatment algorithms resulted in an improvement, overall, these pre-treatment algorithms could not compensate for the factors affecting the measured spectra with disturbance. Though the obtained result is promising, further study is still needed to disentangle the impacts and interactions of various disturbing factors for different soil types.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10511 - Environmental sciences (social aspects to be 5.7)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/SS02030018" target="_blank" >SS02030018: Centrum pro krajinu a biodiverzitu</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Science of The Total Environment

  • ISSN

    0048-9697

  • e-ISSN

    1879-1026

  • Svazek periodika

    838

  • Číslo periodika v rámci svazku

    10 September 2022

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    6

  • Strana od-do

    156304

  • Kód UT WoS článku

    000809761500013

  • EID výsledku v databázi Scopus

    2-s2.0-85131398650