Can in situ spectral measurements under disturbance-reduced environmental conditions help improve soil organic carbon estimation?
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00027073%3A_____%2F22%3AN0000117" target="_blank" >RIV/00027073:_____/22:N0000117 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/60460709:41210/22:91397 RIV/60460709:41330/22:91397
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/abs/pii/S0048969722034015" target="_blank" >https://www.sciencedirect.com/science/article/abs/pii/S0048969722034015</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.scitotenv.2022.156304" target="_blank" >10.1016/j.scitotenv.2022.156304</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Can in situ spectral measurements under disturbance-reduced environmental conditions help improve soil organic carbon estimation?
Popis výsledku v původním jazyce
In situ visible and near-infrared (Vis-NIR) spectroscopy has proven to be a reliable tool for determining soil organic carbon (SOC) content with a small loss of precision as compared to laboratory measurements. The loss of precision is a result of disturbing external environmental factors that disrupt spectral measurements. For example, roughness, changes in weather conditions, humidity, temperature, human factors, spectral noise and especially soil water. It has been assumed that, in situ predictive capability could be improved if some of these factors are either minimized or eliminated during the in situ measurement. For this study, the prediction of SOC was carried out under two different in situ measurement conditions; less favourable environmental conditions (with disturbances) and more favourable site-specific conditions (disturbance-reduced conditions). The primary goal is to determine whether the estimate of SOC can be improved under more favourable site-specific conditions, as well as the impact of pre-treatment algorithms on both less and more favourable disturbed conditions. The study employed a large range of pretreatment algorithms and their combinations. Three separate multivariate models were used to predict SOC, namely Cubist, support vector machine regression (SVMR), and partial least squares regression (PLSR). The result clearly shows that reduced disturbing factors (i.e., drier and unploughed soil as well as noise reduction) result in an improvement of SOC prediction with in situ Vis-NIR spectroscopy. The best overall result was achieved with SVMR (R2CV = 0.72, RMSEPcv = 0.21, RPIQ = 2.34). Although the combination of pre-treatment algorithms resulted in an improvement, overall, these pre-treatment algorithms could not compensate for the factors affecting the measured spectra with disturbance. Though the obtained result is promising, further study is still needed to disentangle the impacts and interactions of various disturbing factors for different soil types.
Název v anglickém jazyce
Can in situ spectral measurements under disturbance-reduced environmental conditions help improve soil organic carbon estimation?
Popis výsledku anglicky
In situ visible and near-infrared (Vis-NIR) spectroscopy has proven to be a reliable tool for determining soil organic carbon (SOC) content with a small loss of precision as compared to laboratory measurements. The loss of precision is a result of disturbing external environmental factors that disrupt spectral measurements. For example, roughness, changes in weather conditions, humidity, temperature, human factors, spectral noise and especially soil water. It has been assumed that, in situ predictive capability could be improved if some of these factors are either minimized or eliminated during the in situ measurement. For this study, the prediction of SOC was carried out under two different in situ measurement conditions; less favourable environmental conditions (with disturbances) and more favourable site-specific conditions (disturbance-reduced conditions). The primary goal is to determine whether the estimate of SOC can be improved under more favourable site-specific conditions, as well as the impact of pre-treatment algorithms on both less and more favourable disturbed conditions. The study employed a large range of pretreatment algorithms and their combinations. Three separate multivariate models were used to predict SOC, namely Cubist, support vector machine regression (SVMR), and partial least squares regression (PLSR). The result clearly shows that reduced disturbing factors (i.e., drier and unploughed soil as well as noise reduction) result in an improvement of SOC prediction with in situ Vis-NIR spectroscopy. The best overall result was achieved with SVMR (R2CV = 0.72, RMSEPcv = 0.21, RPIQ = 2.34). Although the combination of pre-treatment algorithms resulted in an improvement, overall, these pre-treatment algorithms could not compensate for the factors affecting the measured spectra with disturbance. Though the obtained result is promising, further study is still needed to disentangle the impacts and interactions of various disturbing factors for different soil types.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10511 - Environmental sciences (social aspects to be 5.7)
Návaznosti výsledku
Projekt
<a href="/cs/project/SS02030018" target="_blank" >SS02030018: Centrum pro krajinu a biodiverzitu</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Science of The Total Environment
ISSN
0048-9697
e-ISSN
1879-1026
Svazek periodika
838
Číslo periodika v rámci svazku
10 September 2022
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
6
Strana od-do
156304
Kód UT WoS článku
000809761500013
EID výsledku v databázi Scopus
2-s2.0-85131398650