Bipartite Graphs for Visualization Analysis of Microbiome Data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00027162%3A_____%2F16%3AN0000130" target="_blank" >RIV/00027162:_____/16:N0000130 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216224:14310/16:00093546 RIV/00216305:26220/16:PU119240
Výsledek na webu
<a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4888752/" target="_blank" >https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4888752/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4137/EBO.S38546" target="_blank" >10.4137/EBO.S38546</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Bipartite Graphs for Visualization Analysis of Microbiome Data
Popis výsledku v původním jazyce
Visualization analysis plays an important role in metagenomics research. Proper and clear visualization can help researchers get their first insights into data and by selecting different features, also revealing and highlighting hidden relationships and drawing conclusions. To prevent the resulting presentations from becoming chaotic, visualization techniques have to properly tackle the high dimensionality of microbiome data. Although a number of different methods based on dimensionality reduction, correlations, Venn diagrams, and network representations have already been published, there is still room for further improvement, especially in the techniques that allow visual comparison of several environments or developmental stages in one environment. In this article, we represent microbiome data by bipartite graphs, where one partition stands for taxa and the other stands for samples. We demonstrated that community detection is independent of taxonomical level. Moreover, focusing on higher taxonomical levels and the appropriate merging of samples greatly helps improving graph organization and makes our presentations clearer than other graph and network visualizations. Capturing labels in the vertices also brings the possibility of clearly comparing two or more microbial communities by showing their common and unique parts.
Název v anglickém jazyce
Bipartite Graphs for Visualization Analysis of Microbiome Data
Popis výsledku anglicky
Visualization analysis plays an important role in metagenomics research. Proper and clear visualization can help researchers get their first insights into data and by selecting different features, also revealing and highlighting hidden relationships and drawing conclusions. To prevent the resulting presentations from becoming chaotic, visualization techniques have to properly tackle the high dimensionality of microbiome data. Although a number of different methods based on dimensionality reduction, correlations, Venn diagrams, and network representations have already been published, there is still room for further improvement, especially in the techniques that allow visual comparison of several environments or developmental stages in one environment. In this article, we represent microbiome data by bipartite graphs, where one partition stands for taxa and the other stands for samples. We demonstrated that community detection is independent of taxonomical level. Moreover, focusing on higher taxonomical levels and the appropriate merging of samples greatly helps improving graph organization and makes our presentations clearer than other graph and network visualizations. Capturing labels in the vertices also brings the possibility of clearly comparing two or more microbial communities by showing their common and unique parts.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
GJ - Choroby a škůdci zvířat, veterinární medicina
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Evolutionary Bioinformatics
ISSN
1176-9343
e-ISSN
—
Svazek periodika
2016
Číslo periodika v rámci svazku
12 (Suppl 1)
Stát vydavatele periodika
NZ - Nový Zéland
Počet stran výsledku
7
Strana od-do
17-23
Kód UT WoS článku
000382989300003
EID výsledku v databázi Scopus
—