Development of multiplex tool for detection of pathogenic agents in food and environment
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00027162%3A_____%2F18%3AN0000077" target="_blank" >RIV/00027162:_____/18:N0000077 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216224:14310/18:00106012
Výsledek na webu
<a href="http://www.eavld2018.org/images/files/EAVLD_2018-Abstract_book.pdf" target="_blank" >http://www.eavld2018.org/images/files/EAVLD_2018-Abstract_book.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Development of multiplex tool for detection of pathogenic agents in food and environment
Popis výsledku v původním jazyce
5th Congress of the European Association of Veterinary Laboratory Diagnostics, MCE BUSINESS Conference Centre, Brussels, Belgium, 14. – 17.10.2018 – presentation. Microbiological safety of food and environment is currently a highly discussed topic. Detection of pathogenic agents in most cases relies on protocols using real time PCR (qPCR). qPCR, providing sensitive and specific detection, is still generally considered as a gold standard. However, qPCR has a significant drawback. There is not enough fluorescent dyes to create sufficiently robust systems for detection of larger number of targets. For this purpose, the xMAP® technology based method is being developed. The method uses two DNA probes for every target. One of them carries specific TAG sequence. These probes are linked together in presence of target DNA. Universal primer binding sequences at the ends of probes allow amplification of ligated probes. One of the two primers used for amplification is labelled. Detection of amplified probes uses sets of magnetic beads with unique absorption spectrum which are covered by anti-TAG sequences. Amplified probes are thus bound by their specific TAG sequence to complementary anti-TAG sequence on appropriate beads. Signal from beads is eventually read by MAGPIX® instrument. The developed method provides unique tool with potential to make routine analysis of various samples much more robust (up to 50 targets in one reaction), less laborious, less expensive and time consuming. Until now, several systems comprising human and veterinary pathogens have been developed (e.g. Campylobacter jejuni, Listeria monocytogenes, Salmonella enterica, Escherichia coli, Giardia lamblia, Taenia saginata, Norovirus, hepatitis A virus, hepatitis E virus). Validation of those systems and development of other targets is underway.
Název v anglickém jazyce
Development of multiplex tool for detection of pathogenic agents in food and environment
Popis výsledku anglicky
5th Congress of the European Association of Veterinary Laboratory Diagnostics, MCE BUSINESS Conference Centre, Brussels, Belgium, 14. – 17.10.2018 – presentation. Microbiological safety of food and environment is currently a highly discussed topic. Detection of pathogenic agents in most cases relies on protocols using real time PCR (qPCR). qPCR, providing sensitive and specific detection, is still generally considered as a gold standard. However, qPCR has a significant drawback. There is not enough fluorescent dyes to create sufficiently robust systems for detection of larger number of targets. For this purpose, the xMAP® technology based method is being developed. The method uses two DNA probes for every target. One of them carries specific TAG sequence. These probes are linked together in presence of target DNA. Universal primer binding sequences at the ends of probes allow amplification of ligated probes. One of the two primers used for amplification is labelled. Detection of amplified probes uses sets of magnetic beads with unique absorption spectrum which are covered by anti-TAG sequences. Amplified probes are thus bound by their specific TAG sequence to complementary anti-TAG sequence on appropriate beads. Signal from beads is eventually read by MAGPIX® instrument. The developed method provides unique tool with potential to make routine analysis of various samples much more robust (up to 50 targets in one reaction), less laborious, less expensive and time consuming. Until now, several systems comprising human and veterinary pathogens have been developed (e.g. Campylobacter jejuni, Listeria monocytogenes, Salmonella enterica, Escherichia coli, Giardia lamblia, Taenia saginata, Norovirus, hepatitis A virus, hepatitis E virus). Validation of those systems and development of other targets is underway.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
10606 - Microbiology
Návaznosti výsledku
Projekt
<a href="/cs/project/VI20152020044" target="_blank" >VI20152020044: Multiplexní xMAP technologie pro komplexní detekci patogenních agens významných z pohledu zajištění ochrany zdraví lidí a zvířat</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů