Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Drivers of farm performance in Czech crop farms

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00027251%3A_____%2F20%3AN0000006" target="_blank" >RIV/00027251:_____/20:N0000006 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.agriculturejournals.cz/web/agricecon.htm?type=article&id=231_2019-AGRICECON" target="_blank" >https://www.agriculturejournals.cz/web/agricecon.htm?type=article&id=231_2019-AGRICECON</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.17221/231/2019-AGRICECON" target="_blank" >10.17221/231/2019-AGRICECON</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Drivers of farm performance in Czech crop farms

  • Popis výsledku v původním jazyce

    When analysing drivers affecting the farm performance, the presence of different technologies should be taken into account. We assume that the technology used by crop farms is not the same for all producers and therefore we use latent class model to identify technological classes at first. Class definition is based on multidimensional classification and determination of indices given by the values of individual components. The principal components analysis is applied to estimate significant and robust weights for the index components. FADN (Farm Accountancy Data Network) database, Czech crop farms data from 2005 to 2017 were used and three groups of technology classes of farms were identified with a determinant influence of the structure index and localisation. The other indices characterise sustainability, innovation, technology, diversification, and individual characteristics. Three distinct classes of crop farms were found, one major class and two minor classes. Family driven farms are usually smaller farms in terms of acreage. Highly sustainable crop farms are most likely located in lower altitudes and not in less-favoured areas. Innovative farms are also likely to be more productive. The results indicate that agricultural production farms with a more sustainable way of farming are most likely to be more productive.

  • Název v anglickém jazyce

    Drivers of farm performance in Czech crop farms

  • Popis výsledku anglicky

    When analysing drivers affecting the farm performance, the presence of different technologies should be taken into account. We assume that the technology used by crop farms is not the same for all producers and therefore we use latent class model to identify technological classes at first. Class definition is based on multidimensional classification and determination of indices given by the values of individual components. The principal components analysis is applied to estimate significant and robust weights for the index components. FADN (Farm Accountancy Data Network) database, Czech crop farms data from 2005 to 2017 were used and three groups of technology classes of farms were identified with a determinant influence of the structure index and localisation. The other indices characterise sustainability, innovation, technology, diversification, and individual characteristics. Three distinct classes of crop farms were found, one major class and two minor classes. Family driven farms are usually smaller farms in terms of acreage. Highly sustainable crop farms are most likely located in lower altitudes and not in less-favoured areas. Innovative farms are also likely to be more productive. The results indicate that agricultural production farms with a more sustainable way of farming are most likely to be more productive.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    40101 - Agriculture

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Agricultural Economics

  • ISSN

    0139-570X

  • e-ISSN

    1805-9295

  • Svazek periodika

    66

  • Číslo periodika v rámci svazku

    7

  • Stát vydavatele periodika

    CZ - Česká republika

  • Počet stran výsledku

    10

  • Strana od-do

    297-306

  • Kód UT WoS článku

    000551034000001

  • EID výsledku v databázi Scopus