Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Disorders of Sulfur Amino Acid Metabolism

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00064165%3A_____%2F16%3A10333588" target="_blank" >RIV/00064165:_____/16:10333588 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00216208:11110/16:10333588

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1007/978-3-662-49771-5_20" target="_blank" >http://dx.doi.org/10.1007/978-3-662-49771-5_20</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-662-49771-5_20" target="_blank" >10.1007/978-3-662-49771-5_20</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Disorders of Sulfur Amino Acid Metabolism

  • Popis výsledku v původním jazyce

    The essential amino acid methionine is converted by two methionine adenosyltransferases (MAT I/III and MATII) to S-adenosylmethionine (SAM). The methyl group of SAM is used in numerous biologically important methylation reactions, yielding S-adenosylhomocysteine (SAH); excess SAM is removed from the cycle by glycine N-methyltransferase (GNMT). SAH is cleaved by of S-adenosylhomocysteine hydrolase (SAHH) to homocysteine and adenosine, which is further metabolized by adenosine kinase (ADK). Homocysteine can be converted back to methionine by the remethylation pathway or using betaine as a methyl-group donor, in patients treated with this drug. Alternatively, homocysteine is irreversibly metabolized to sulfate by the transsulfuration pathway. Homocysteine is condensed with serine to form cystathionine, which is subsequently cleaved to form cysteine and α-ketobutyrate; these reactions are catalysed by cystathionine β-synthase (CBS) and cystathionine γ-lyase (CTH), respectively, which can also use cysteine and/or homocysteine to synthesize hydrogen sulfide. Cysteine can be further converted in a series of reactions into taurine, or via the mitochondrial enzymes, aspartate aminotransferase (AST) and 3-mercaptopyruvate sulfurtransferase (MPST), to pyruvate and hydrogen sulfide. Mitochondrial oxidation of hydrogen sulfide involves several steps yielding thiosulfate, sulfite and finally sulfate; the figure only shows sulfur dioxygenase (ETHE1) and sulfite oxidase (SUOX), which requires the molybdenum cofactor, produced by enzymes encoded by molybdenum cofactor synthesis 1 and 2 genes (MOCS1 and 2) and by gephyrin (GPHN).

  • Název v anglickém jazyce

    Disorders of Sulfur Amino Acid Metabolism

  • Popis výsledku anglicky

    The essential amino acid methionine is converted by two methionine adenosyltransferases (MAT I/III and MATII) to S-adenosylmethionine (SAM). The methyl group of SAM is used in numerous biologically important methylation reactions, yielding S-adenosylhomocysteine (SAH); excess SAM is removed from the cycle by glycine N-methyltransferase (GNMT). SAH is cleaved by of S-adenosylhomocysteine hydrolase (SAHH) to homocysteine and adenosine, which is further metabolized by adenosine kinase (ADK). Homocysteine can be converted back to methionine by the remethylation pathway or using betaine as a methyl-group donor, in patients treated with this drug. Alternatively, homocysteine is irreversibly metabolized to sulfate by the transsulfuration pathway. Homocysteine is condensed with serine to form cystathionine, which is subsequently cleaved to form cysteine and α-ketobutyrate; these reactions are catalysed by cystathionine β-synthase (CBS) and cystathionine γ-lyase (CTH), respectively, which can also use cysteine and/or homocysteine to synthesize hydrogen sulfide. Cysteine can be further converted in a series of reactions into taurine, or via the mitochondrial enzymes, aspartate aminotransferase (AST) and 3-mercaptopyruvate sulfurtransferase (MPST), to pyruvate and hydrogen sulfide. Mitochondrial oxidation of hydrogen sulfide involves several steps yielding thiosulfate, sulfite and finally sulfate; the figure only shows sulfur dioxygenase (ETHE1) and sulfite oxidase (SUOX), which requires the molybdenum cofactor, produced by enzymes encoded by molybdenum cofactor synthesis 1 and 2 genes (MOCS1 and 2) and by gephyrin (GPHN).

Klasifikace

  • Druh

    C - Kapitola v odborné knize

  • CEP obor

    FB - Endokrinologie, diabetologie, metabolismus, výživa

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    V - Vyzkumna aktivita podporovana z jinych verejnych zdroju

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název knihy nebo sborníku

    Inborn Metabolic Diseases. Diagnosis and Treatment

  • ISBN

    978-3-662-49769-2

  • Počet stran výsledku

    12

  • Strana od-do

    309-320

  • Počet stran knihy

    658

  • Název nakladatele

    Springer

  • Místo vydání

    Berlin, Heidelberg

  • Kód UT WoS kapitoly