A prognostic model integrating PET-derived metrics and image texture analyses with clinical risk factors from GOYA
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00064165%3A_____%2F22%3A10457475" target="_blank" >RIV/00064165:_____/22:10457475 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11110/22:10457475
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=VWbC2zwy6F" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=VWbC2zwy6F</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/jha2.421" target="_blank" >10.1002/jha2.421</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A prognostic model integrating PET-derived metrics and image texture analyses with clinical risk factors from GOYA
Popis výsledku v původním jazyce
Image texture analysis (radiomics) uses radiographic images to quantify characteristics that may identify tumour heterogeneity and associated patient outcomes. Using fluoro-deoxy-glucose positron emission tomography/computed tomography (FDG-PET/CT)-derived data, including quantitative metrics, image texture analysis and other clinical risk factors, we aimed to develop a prognostic model that predicts survival in patients with previously untreated diffuse large B-cell lymphoma (DLBCL) from GOYA (NCT01287741). Image texture features and clinical risk factors were combined into a random forest model and compared with the international prognostic index (IPI) for DLBCL based on progression-free survival (PFS) and overall survival (OS) predictions. Baseline FDG-PET scans were available for 1263 patients, 832 patients of these were cell-of-origin (COO)-evaluable. Patients were stratified by IPI or radiomics features plus clinical risk factors into low-, intermediate- and high-risk groups. The random forest model with COO subgroups identified a clearer high-risk population (45% 2-year PFS [95% confidence interval (CI) 40%-52%]; 65% 2-year OS [95% CI 59%-71%]) than the IPI (58% 2-year PFS [95% CI 50%-67%]; 69% 2-year OS [95% CI 62%-77%]). This study confirms that standard clinical risk factors can be combined with PET-derived image texture features to provide an improved prognostic model predicting survival in untreated DLBCL.
Název v anglickém jazyce
A prognostic model integrating PET-derived metrics and image texture analyses with clinical risk factors from GOYA
Popis výsledku anglicky
Image texture analysis (radiomics) uses radiographic images to quantify characteristics that may identify tumour heterogeneity and associated patient outcomes. Using fluoro-deoxy-glucose positron emission tomography/computed tomography (FDG-PET/CT)-derived data, including quantitative metrics, image texture analysis and other clinical risk factors, we aimed to develop a prognostic model that predicts survival in patients with previously untreated diffuse large B-cell lymphoma (DLBCL) from GOYA (NCT01287741). Image texture features and clinical risk factors were combined into a random forest model and compared with the international prognostic index (IPI) for DLBCL based on progression-free survival (PFS) and overall survival (OS) predictions. Baseline FDG-PET scans were available for 1263 patients, 832 patients of these were cell-of-origin (COO)-evaluable. Patients were stratified by IPI or radiomics features plus clinical risk factors into low-, intermediate- and high-risk groups. The random forest model with COO subgroups identified a clearer high-risk population (45% 2-year PFS [95% confidence interval (CI) 40%-52%]; 65% 2-year OS [95% CI 59%-71%]) than the IPI (58% 2-year PFS [95% CI 50%-67%]; 69% 2-year OS [95% CI 62%-77%]). This study confirms that standard clinical risk factors can be combined with PET-derived image texture features to provide an improved prognostic model predicting survival in untreated DLBCL.
Klasifikace
Druh
J<sub>ost</sub> - Ostatní články v recenzovaných periodicích
CEP obor
—
OECD FORD obor
30205 - Hematology
Návaznosti výsledku
Projekt
—
Návaznosti
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
EJHaem [online]
ISSN
2688-6146
e-ISSN
2688-6146
Svazek periodika
3
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
9
Strana od-do
406-414
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—