Multimodal-Driven Magnetic Microrobots with Enhanced Bactericidal Activity for Biofilm Eradication and Removal from Titanium Mesh
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00064165%3A_____%2F23%3A10465274" target="_blank" >RIV/00064165:_____/23:10465274 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11110/23:10465274 RIV/61989100:27240/23:10253018 RIV/60461373:22310/23:43927337 RIV/60461373:22330/23:43927337
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=dMfo7u9sK9" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=dMfo7u9sK9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/adma.202300191" target="_blank" >10.1002/adma.202300191</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Multimodal-Driven Magnetic Microrobots with Enhanced Bactericidal Activity for Biofilm Eradication and Removal from Titanium Mesh
Popis výsledku v původním jazyce
Modern micro/nanorobots can perform multiple tasks for biomedical and environmental applications. Particularly, magnetic microrobots can be completely controlled by a rotating magnetic field and their motion powered and controlled without the use of toxic fuels, which makes them most promising for biomedical application. Moreover, they are able to form swarms, allowing them to perform specific tasks at a larger scale than a single microrobot. In this work, they developed magnetic microrobots composed of halloysite nanotubes as backbone and iron oxide (Fe3O4) nanoparticles as magnetic material allowing magnetic propulsion and covered these with polyethylenimine to load ampicillin and prevent the microrobots from disassembling. These microrobots exhibit multimodal motion as single robots as well as in swarms. In addition, they can transform from tumbling to spinning motion and vice-versa, and when in swarm mode they can change their motion from vortex to ribbon and back again. Finally, the vortex motion mode is used to penetrate and disrupt the extracellular matrix of Staphylococcus aureus biofilm colonized on titanium mesh used for bone restoration, which improves the effect of the antibiotic's activity. Such magnetic microrobots for biofilm removal from medical implants could reduce implant rejection and improve patients' well-being.
Název v anglickém jazyce
Multimodal-Driven Magnetic Microrobots with Enhanced Bactericidal Activity for Biofilm Eradication and Removal from Titanium Mesh
Popis výsledku anglicky
Modern micro/nanorobots can perform multiple tasks for biomedical and environmental applications. Particularly, magnetic microrobots can be completely controlled by a rotating magnetic field and their motion powered and controlled without the use of toxic fuels, which makes them most promising for biomedical application. Moreover, they are able to form swarms, allowing them to perform specific tasks at a larger scale than a single microrobot. In this work, they developed magnetic microrobots composed of halloysite nanotubes as backbone and iron oxide (Fe3O4) nanoparticles as magnetic material allowing magnetic propulsion and covered these with polyethylenimine to load ampicillin and prevent the microrobots from disassembling. These microrobots exhibit multimodal motion as single robots as well as in swarms. In addition, they can transform from tumbling to spinning motion and vice-versa, and when in swarm mode they can change their motion from vortex to ribbon and back again. Finally, the vortex motion mode is used to penetrate and disrupt the extracellular matrix of Staphylococcus aureus biofilm colonized on titanium mesh used for bone restoration, which improves the effect of the antibiotic's activity. Such magnetic microrobots for biofilm removal from medical implants could reduce implant rejection and improve patients' well-being.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
30208 - Dentistry, oral surgery and medicine
Návaznosti výsledku
Projekt
—
Návaznosti
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Advanced Materials
ISSN
0935-9648
e-ISSN
1521-4095
Svazek periodika
35
Číslo periodika v rámci svazku
23
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
12
Strana od-do
2300191
Kód UT WoS článku
000974496100001
EID výsledku v databázi Scopus
2-s2.0-85153047373