Lexical and syntactic deficits analyzed via automated natural language processing: the new monitoring tool in multiple sclerosis
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00064165%3A_____%2F23%3A10466081" target="_blank" >RIV/00064165:_____/23:10466081 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21230/23:00366987 RIV/00216208:11110/23:10466081
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=KrlwPYtflE" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=KrlwPYtflE</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1177/17562864231180719" target="_blank" >10.1177/17562864231180719</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Lexical and syntactic deficits analyzed via automated natural language processing: the new monitoring tool in multiple sclerosis
Popis výsledku v původním jazyce
Background: Impairment of higher language functions associated with natural spontaneous speech in multiple sclerosis (MS) remains underexplored. Objectives: We presented a fully automated method for discriminating MS patients from healthy controls based on lexical and syntactic linguistic features. Methods: We enrolled 120 MS individuals with Expanded Disability Status Scale ranging from 1 to 6.5 and 120 age-, sex-, and education-matched healthy controls. Linguistic analysis was performed with fully automated methods based on automatic speech recognition and natural language processing techniques using eight lexical and syntactic features acquired from the spontaneous discourse. Fully automated annotations were compared with human annotations. Results: Compared with healthy controls, lexical impairment in MS consisted of an increase in content words (p = 0.037), a decrease in function words (p = 0.007), and overuse of verbs at the expense of noun (p = 0.047), while syntactic impairment manifested as shorter utterance length (p = 0.002), and low number of coordinate clause (p < 0.001). A fully automated language analysis approach enabled discrimination between MS and controls with an area under the curve of 0.70. A significant relationship was detected between shorter utterance length and lower symbol digit modalities test score (r = 0.25, p = 0.008). Strong associations between a majority of automatically and manually computed features were observed (r > 0.88, p < 0.001). Conclusion: Automated discourse analysis has the potential to provide an easy-to-implement and low-cost language-based biomarker of cognitive decline in MS for future clinical trials.
Název v anglickém jazyce
Lexical and syntactic deficits analyzed via automated natural language processing: the new monitoring tool in multiple sclerosis
Popis výsledku anglicky
Background: Impairment of higher language functions associated with natural spontaneous speech in multiple sclerosis (MS) remains underexplored. Objectives: We presented a fully automated method for discriminating MS patients from healthy controls based on lexical and syntactic linguistic features. Methods: We enrolled 120 MS individuals with Expanded Disability Status Scale ranging from 1 to 6.5 and 120 age-, sex-, and education-matched healthy controls. Linguistic analysis was performed with fully automated methods based on automatic speech recognition and natural language processing techniques using eight lexical and syntactic features acquired from the spontaneous discourse. Fully automated annotations were compared with human annotations. Results: Compared with healthy controls, lexical impairment in MS consisted of an increase in content words (p = 0.037), a decrease in function words (p = 0.007), and overuse of verbs at the expense of noun (p = 0.047), while syntactic impairment manifested as shorter utterance length (p = 0.002), and low number of coordinate clause (p < 0.001). A fully automated language analysis approach enabled discrimination between MS and controls with an area under the curve of 0.70. A significant relationship was detected between shorter utterance length and lower symbol digit modalities test score (r = 0.25, p = 0.008). Strong associations between a majority of automatically and manually computed features were observed (r > 0.88, p < 0.001). Conclusion: Automated discourse analysis has the potential to provide an easy-to-implement and low-cost language-based biomarker of cognitive decline in MS for future clinical trials.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
30103 - Neurosciences (including psychophysiology)
Návaznosti výsledku
Projekt
<a href="/cs/project/LX22NPO5107" target="_blank" >LX22NPO5107: Národní ústav pro neurologický výzkum</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Therapeutic Advances in Neurological Disorders
ISSN
1756-2856
e-ISSN
1756-2864
Svazek periodika
16
Číslo periodika v rámci svazku
June
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
13
Strana od-do
17562864231180719
Kód UT WoS článku
001013115100001
EID výsledku v databázi Scopus
2-s2.0-85163658732