Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Lexical and syntactic deficits analyzed via automated natural language processing: the new monitoring tool in multiple sclerosis

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00064165%3A_____%2F23%3A10466081" target="_blank" >RIV/00064165:_____/23:10466081 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/68407700:21230/23:00366987 RIV/00216208:11110/23:10466081

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=KrlwPYtflE" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=KrlwPYtflE</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1177/17562864231180719" target="_blank" >10.1177/17562864231180719</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Lexical and syntactic deficits analyzed via automated natural language processing: the new monitoring tool in multiple sclerosis

  • Popis výsledku v původním jazyce

    Background: Impairment of higher language functions associated with natural spontaneous speech in multiple sclerosis (MS) remains underexplored. Objectives: We presented a fully automated method for discriminating MS patients from healthy controls based on lexical and syntactic linguistic features. Methods: We enrolled 120 MS individuals with Expanded Disability Status Scale ranging from 1 to 6.5 and 120 age-, sex-, and education-matched healthy controls. Linguistic analysis was performed with fully automated methods based on automatic speech recognition and natural language processing techniques using eight lexical and syntactic features acquired from the spontaneous discourse. Fully automated annotations were compared with human annotations. Results: Compared with healthy controls, lexical impairment in MS consisted of an increase in content words (p = 0.037), a decrease in function words (p = 0.007), and overuse of verbs at the expense of noun (p = 0.047), while syntactic impairment manifested as shorter utterance length (p = 0.002), and low number of coordinate clause (p &lt; 0.001). A fully automated language analysis approach enabled discrimination between MS and controls with an area under the curve of 0.70. A significant relationship was detected between shorter utterance length and lower symbol digit modalities test score (r = 0.25, p = 0.008). Strong associations between a majority of automatically and manually computed features were observed (r &gt; 0.88, p &lt; 0.001). Conclusion: Automated discourse analysis has the potential to provide an easy-to-implement and low-cost language-based biomarker of cognitive decline in MS for future clinical trials.

  • Název v anglickém jazyce

    Lexical and syntactic deficits analyzed via automated natural language processing: the new monitoring tool in multiple sclerosis

  • Popis výsledku anglicky

    Background: Impairment of higher language functions associated with natural spontaneous speech in multiple sclerosis (MS) remains underexplored. Objectives: We presented a fully automated method for discriminating MS patients from healthy controls based on lexical and syntactic linguistic features. Methods: We enrolled 120 MS individuals with Expanded Disability Status Scale ranging from 1 to 6.5 and 120 age-, sex-, and education-matched healthy controls. Linguistic analysis was performed with fully automated methods based on automatic speech recognition and natural language processing techniques using eight lexical and syntactic features acquired from the spontaneous discourse. Fully automated annotations were compared with human annotations. Results: Compared with healthy controls, lexical impairment in MS consisted of an increase in content words (p = 0.037), a decrease in function words (p = 0.007), and overuse of verbs at the expense of noun (p = 0.047), while syntactic impairment manifested as shorter utterance length (p = 0.002), and low number of coordinate clause (p &lt; 0.001). A fully automated language analysis approach enabled discrimination between MS and controls with an area under the curve of 0.70. A significant relationship was detected between shorter utterance length and lower symbol digit modalities test score (r = 0.25, p = 0.008). Strong associations between a majority of automatically and manually computed features were observed (r &gt; 0.88, p &lt; 0.001). Conclusion: Automated discourse analysis has the potential to provide an easy-to-implement and low-cost language-based biomarker of cognitive decline in MS for future clinical trials.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    30103 - Neurosciences (including psychophysiology)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LX22NPO5107" target="_blank" >LX22NPO5107: Národní ústav pro neurologický výzkum</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Therapeutic Advances in Neurological Disorders

  • ISSN

    1756-2856

  • e-ISSN

    1756-2864

  • Svazek periodika

    16

  • Číslo periodika v rámci svazku

    June

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    13

  • Strana od-do

    17562864231180719

  • Kód UT WoS článku

    001013115100001

  • EID výsledku v databázi Scopus

    2-s2.0-85163658732